
pybnb
Release 0.6.2

Dec 10, 2019

Contents

1 Getting Started 3
1.1 Installation . 3
1.2 Complete Example . 3
1.3 More Examples . 4
1.4 Defining a Problem . 5
1.5 Solving a Problem . 7

1.5.1 Creating a Solver . 7
1.6 How the Solver Calls the Problem Methods . 8

2 Advanced Usage 11
2.1 Setting the Queue Strategy and Solver Tolerances . 11
2.2 Terminating a Solve Early . 11
2.3 Continuing a Solve After Stopping . 12
2.4 Serialization Configuration . 13

3 pybnb.futures 17
3.1 Using a Nested Solve to Improve Parallel Performance . 17

4 Reference 19
4.1 Quick Links . 19
4.2 Modules . 19

4.2.1 pybnb.configuration . 19
4.2.2 pybnb.common . 20
4.2.3 pybnb.problem . 21
4.2.4 pybnb.node . 23
4.2.5 pybnb.solver_results . 24
4.2.6 pybnb.solver . 25
4.2.7 pybnb.convergence_checker . 30
4.2.8 pybnb.priority_queue . 32
4.2.9 pybnb.dispatcher . 37
4.2.10 pybnb.dispatcher_proxy . 41
4.2.11 pybnb.mpi_utils . 41
4.2.12 pybnb.misc . 42
4.2.13 pybnb.pyomo . 44
4.2.14 pybnb.futures . 48

Python Module Index 49

i

Index 51

ii

pybnb, Release 0.6.2

pybnb is a parallel branch-and-bound engine written in Python. It designed to run on distributed computing architec-
tures, using mpi4py for fast inter-process communication.

This package is meant to serve as a back-end for problem-specific solution strategies that utilize a branch-and-bound
algorithm. The following core functionality is included:

• work load distribution through a central dispatcher

• work task prioritization strategies (e.g., worst bound first, breadth first, custom)

• solver-like log output showing algorithm progress

To use this package, one must implement a branch-and-bound problem by subclassing the Problem interface and
defining the methods shown in the example below.

>>> import pybnb
>>> # define a branch-and-bound problem
>>> class MyProblem(pybnb.Problem):
... def sense(self): ...
... def objective(self): ...
... def bound(self): ...
... def save_state(self, node): ...
... def load_state(self, node): ...
... def branch(self): ...
>>> # solve a problem instance
>>> result = pybnb.solve(MyProblem())
>>> print(result.solution_status)
'optimal'

Contents 1

pybnb, Release 0.6.2

2 Contents

CHAPTER 1

Getting Started

1.1 Installation

You can install pybnb with pip:

$ pip install pybnb

pybnb requires mpi4py to solve problems in parallel. However, it will also solve problems in serial if this module is
not available. Thus, mpi4py is not listed as a package requirement, and it may need to be installed in a separate step.

1.2 Complete Example

The code below shows a complete example script that (1) defines a problem, (2) creates a solver, and (3) solves the
problem.

simple.py

class Simple(pybnb.Problem):
def __init__(self):

self._xL, self._xU = 0, 1
#
required methods
#
def sense(self):

return pybnb.minimize
def objective(self):

return round(self._xU-self._xL,3)
def bound(self):

return -(self._xU - self._xL)**2
def save_state(self, node):

node.state = (self._xL, self._xU)
def load_state(self, node):

(continues on next page)

3

pybnb, Release 0.6.2

(continued from previous page)

(self._xL, self._xU) = node.state
def branch(self):

xL, xU = self._xL, self._xU
xM = 0.5 * (xL + xU)
child = pybnb.Node()
child.state = (xL, xM)
yield child
child = pybnb.Node()
child.state = (xM, xU)
yield child

#
optional methods
#
def notify_solve_begins(self,

comm,
worker_comm,
convergence_checker):

pass
def notify_new_best_node(self,

node,
current):

pass
def notify_solve_finished(self,

comm,
worker_comm,
results):

pass

problem = Simple()
solver = pybnb.Solver()
results = solver.solve(problem,

absolute_gap=1e-8)

To solve the problem in serial, the example script should be launched with the python interpretor:

$ python simple.py

To solve the problem in parallel, the example script should be launched using the same command as above, only
wrapped with mpiexec (specifying the number processes):

$ mpiexec -n 4 python simple.py

Note that the parallel solve implementation used by pybnb always designates exactly one process as a dispatcher.
If more than one process is involved in a solve, the dispatcher will only manage the global work queue, leaving
the processing of all branch-and-bound nodes to the remaining processes. Thus, one should not expect any parallel
speedup until at least three processes are used to solve a problem.

1.3 More Examples

pybnb is distributed with a number of example problem implementations. Each example can be run in serial or in
parallel with the mpiexec command. Some examples require additional python packages or external binaries that
are not listed as dependencies for pybnb (e.g., pyomo). See the comments at the top of each example file for a brief
explanation.

The examples directory included with the source repository is organized into two top-level directories.

4 Chapter 1. Getting Started

https://github.com/ghackebeil/pybnb/blob/master/examples

pybnb, Release 0.6.2

• command_line_problems: Includes basic problem implementations that expose all pybnb solver options as
command-line arguments. Simply execute one of the available examples with --help as an argument to see
the list of available solver options.

– binary_knapsack.py

– lipschitz_1d.py (faster with numba, but it is optional)

– bin_packing.py (requires: pyomo + ipopt binary)

– rosenbrock_2d.py (requires: pyomo + ipopt binary)

• scripts: Includes problem implementations along with various usages of pybnb ranging from simple to ad-
vanced. Some of the examples accept a small set of command-line options, but most pybnb solver options are
hard-coded and must be manually adjusted within each example file.

– simple.py

– range_reduction_pyomo.py (requires: pyomo + ipopt binary)

– tsp/tsp_byvertex.py

– tsp/tsp_byedge.py (requires: numpy)

1.4 Defining a Problem

To define a branch-and-bound problem with pybnb, one must define a class that implements the Problem interface,
which includes defining at least the six required methods shown below.

import pybnb
class MyProblem(pybnb.Problem):

def __init__(self): ...
required methods
def sense(self): ...
def objective(self): ...
def bound(self): ...
def save_state(self, node): ...
def load_state(self, node): ...
def branch(self): ...
optional methods
def notify_solve_begins(self,

comm,
worker_comm,
convergence_checker):

...
def notify_new_best_node(self,

node,
current):

...
def notify_solve_finished(self,

comm,
worker_comm,
results):

...

Note: The Problem base class is a purely abstract interface that adds no additional data to a problem implementation.
It is not required to call Problem.__init__ when defining the __init__ method on a derived class.

1.4. Defining a Problem 5

https://github.com/ghackebeil/pybnb/blob/master/examples/command_line_problems
https://github.com/ghackebeil/pybnb/blob/master/examples/command_line_problems/binary_knapsack.py
https://github.com/ghackebeil/pybnb/blob/master/examples/command_line_problems/lipschitz_1d.py
https://github.com/ghackebeil/pybnb/blob/master/examples/command_line_problems/bin_packing.py
https://github.com/ghackebeil/pybnb/blob/master/examples/command_line_problems/rosenbrock_2d.py
https://github.com/ghackebeil/pybnb/blob/master/examples/scripts
https://github.com/ghackebeil/pybnb/blob/master/examples/scripts/simple.py
https://github.com/ghackebeil/pybnb/blob/master/examples/scripts/range_reduction_pyomo.py
https://github.com/ghackebeil/pybnb/blob/master/examples/scripts/tsp/tsp_byvertex.py
https://github.com/ghackebeil/pybnb/blob/master/examples/scripts/tsp/tsp_byedge.py

pybnb, Release 0.6.2

The remainder of this section includes a detailed description of each of the required methods.

• Problem.sense()

This is the easiest method to define for a branch-and-bound problem. It should return the objective sense of the
problem, which should always be one of minimize or maximize, and should not change what it returns over
the lifetime of a problem. For instance, to define a problem with an objective value that should be minimized,
the implementation would look something like:

class MyProblem(pybnb.Problem):
def sense(self):

return pybnb.minimize

The Problem base class defines two additional convenience methods Problem.
infeasible_objective() and Problem.unbounded_objective() that return +inf or -inf,
depending on the return value of Problem.sense().

• Problem.bound()

This method should return a valid bound for the objective function over the current problem domain (as defined
by the current problem state), or it can return self.unbounded_objective() if a finite bound can not be
determined.

• Problem.objective()

This method should return a value for the objective function that is feasible for the current problem domain
(as defined by the current problem state), or it can return self.infeasible_objective() if a feasible
objective value can not be determined.

• Problem.save_state(node)

This method should save any relevant state information about the problem onto the state attribute of node
argument. If one wishes to utilize the MPI-based parallel solver, the only requirement for what goes into the
node state is that it can be serialized using the pickle or dill modules. By default, pybnb is configured to
use the pickle module for node serialization. See the section titled Serialization Configuration for details on
how to adjust this and related settings.

• Problem.load_state(node)

This method should load the problem state stored on the state attribute of the node argument. The code block
below shows an example pair of save_state and load_state implementations.

class MyProblem(pybnb.Problem):
def __init__(self):

self._L = 0.0
self._U = 1.0

def save_state(self, node):
node.state = (self._L, self._U)

def load_state(self, node):
(self._L, self._U) = node.state

• Problem.branch()

This method should partition the problem domain defined by the current user state into zero or more child states
and return them on new nodes. A child node can be created by directly instantiating a pybnb.Node object.
Note that for the branching process to make sense, the bound computed from the child states should improve
(or not be worse than) the bound for their parent node. Once the child bound is computed, the solver will issue
a warning if it is found to be worse than the bound from its parent node, as this is indicative of a programming
error or other numerical issues.

6 Chapter 1. Getting Started

pybnb, Release 0.6.2

Note that any child nodes returned from Problem.branch() will automatically be assigned the bound and
objective from their parent for potential use in determining their prioritization in the global work queue. Users
can override this by manually assigning a value to one or both of these node attributes before yielding them from
the branch method.

Additionally, further control over the prioritization of a child node can be achieved by setting the queue_strategy
solve option to “custom”, and then directly assigning a value to the queue_priority attribute of the child
node before it is yielded.

1.5 Solving a Problem

There are two approaches to solving a branch-and-bound problem with pybnb. The first is to simply call the solve
convenience function. This will create a Solver object, call the Solver.solve method, and report the results as
well as additional timing information about the solve.

import pybnb
problem = MyProblem()
results = pybnb.solve(problem,

relative_gap=1e-4)

The second approach is to manually create a Solver object and call the Solver.solve method directly.

Both approaches can solve a problem in serial or parallel. The difference is that the solve convenience function
provides a few additional options that simplify the process of saving solver output and results to a file. Additionally,
collecting the timing information reported by this function adds some additional communication overhead to the end
of the solve; thus, the second approach of directly using a Solver can be more efficient.

1.5.1 Creating a Solver

The following example shows how to create a solver object.

import pybnb
solver = pybnb.Solver()

By default, the solver will automatically use mpi4py.MPI.COMM_WORLD as the communicator, and the rank 0
process will act as the dispatcher. If the mpi4py module is not available, this will result in an ImportError. The
optional keywords comm and dispatcher_rank can be used to change the default behavior.

When a solver is created with Solver(comm=None), this will disable any attempted import of mpi4py, allowing
problems to be solved without the use of any parallel functionality. The comm keyword can also be assigned a com-
municator different from mpi4py.MPI.COMM_WORLD. If the solver communicator includes more than one process,
the dispatcher_rank keyword can be assigned a process rank to control which process is designated as the dispatcher.
However the solver is initialized, the following assertions hold true for the is_dispatcher and is_worker
attributes of the solver object.

if (solver.comm is None) or \
(solver.comm.size == 1):
assert solver.is_dispatcher and \

solver.is_worker
else:

if solver.comm.rank == <dispatcher_rank>:
assert solver.is_dispatcher and \

(not solver.is_worker)
else:

(continues on next page)

1.5. Solving a Problem 7

pybnb, Release 0.6.2

(continued from previous page)

assert (not solver.is_dispatcher) and \
solver.is_worker

1.6 How the Solver Calls the Problem Methods

The following block of pseudocode provides a high-level overview of how the solver calls the methods on a user-
defined problem. Highlighted lines show where problem methods are called.

1 def solve(problem, ...):
2 #
3 # solve initialization
4 #
5 sense = problem.sense()
6 problem.notify_solve_begins(...)
7 root = Node()
8 problem.save_state(root)
9

10 #
11 # solve loop
12 #
13 while <solve_not_terminated>:
14 node, best_node = dispatcher.update(...)
15 if <conditional_1>:
16 problem.notify_new_best_node(node=best_node,
17 current=False)
18 problem.load_state(node)
19 bound = problem.bound()
20 if <conditional_2>:
21 objective = problem.objective()
22 if <conditional_3>:
23 problem.notify_new_best_node(node=node,
24 current=True)
25 if <conditional_4>:
26 children = problem.branch()
27

28 #
29 # solve finalization
30 #
31 problem.load_state(root)
32 problem.notify_solve_finished(...)

Note that during the main solve loop (starting on line 13), it is safe to assume that the six highlighted problem methods
between line 13 and line 25 will be called in the relative order shown. The conditions under which these methods will
be called are briefly discussed below:

• <conditional_1> (line 15): This condition is met when the best_node received from the dispatcher is not un-
bounded and improves upon the best node currently known to the worker process (i.e., has a better objective).
By default, the check for objective improvement is exact, but it can be relaxed by assigning a nonzero value to
the comparison_tolerance keyword of the Solver.solve method.

• <conditional_2> (line 20): This condition is met when the bound computed by the problem for the current node
makes it eligible for the queue relative to the best objective known to the process. By default, this is true when
the bound is better than the best objective by any nonzero amount, but this behavior can be influenced using the
queue_tolerance keyword of the Solver.solve method.

8 Chapter 1. Getting Started

pybnb, Release 0.6.2

• <conditional_3> (line 22): This condition is met when the objective computed by the problem for the current
node is not unbounded and improves upon the objective of the best node currently known to the process. By
default, the check for improvement is exact, but it can be relaxed by assigning a nonzero value to the compari-
son_tolerance keyword of the Solver.solve method.

• <conditional_4> (line 25): This condition is met when the objective computed by the problem for the current
node is not unbounded, when <conditional_2> is still satisfied (based on a potentially new best objective),
and when the difference between the node’s updated bound and objective satisfies the branching tolerance. By
default, the branching tolerance is zero, meaning that any nonzero distance between these two values will satisfy
this check, but this can be adjusted using the branching_tolerance keyword of the Solver.solve method.

1.6. How the Solver Calls the Problem Methods 9

pybnb, Release 0.6.2

10 Chapter 1. Getting Started

CHAPTER 2

Advanced Usage

2.1 Setting the Queue Strategy and Solver Tolerances

pybnb uses a default queue strategy that prioritizes improving the global optimality bound over other solve metrics.
The queue_strategy solve option controls this behavior. See the QueueStrategy enum for a complete list of
available strategies.

The best queue strategy to use depends on characteristics of the problem being solved. Queue strategies such as
“depth” and “lifo” tend to keep the queue size small and reduce the dispatcher overhead, which may be important
for problems with relatively fast objective and bound evaluations. Setting the track_bound solve option to false will
further reduce the dispatcher overhead of these queue strategies. On the other hand, using these strategies may result
in a larger number of nodes being processed before reaching a given optimality gap.

The absolute_gap and relative_gap solve options can be adjusted to control when the solver considers a solution to
be optimal. By default, optimality is defined as having an absolute gap of zero between the best objective and the
global problem bound, and no relative gap is considered. (absolute_gap=0, relative_gap=None). To enable a check
for relative optimality, simply assign a non-negative value to the relative_gap solver option (e.g., relative_gap=1e-4).
Additionally, a function can be provided through the scale_function solver option for computing the scaling factor
used to convert an absolute gap to a relative gap. This function should have the signature f(bound, objective) -> float.
The default scale function is max{1.0,|objective|}.

Two additional solve options to be aware of are the queue_tolerance and branch_tolerance. The queue_tolerance
setting controls when new child nodes are allowed into the queue. If left unset, it will be assigned the value of the
absolute_gap setting. It is not affected by the relative_gap setting. See the section titled Continuing a Solve After
Stopping for further discussion along with an example. Finally, the branch_tolerance setting controls when the branch
method is called. The default setting of zero means that any non-zero gap between a node’s local bound and objective
will allow branching. Larger settings may be useful for avoiding tolerance issues in a problem implementation.

2.2 Terminating a Solve Early

A solve that is launched without the use of mpiexec can be terminated at any point by entering Ctrl-C (sending the
process a SIGINT signal). If the signal is successfully received, the solver will attempt to gracefully stop the solve

11

pybnb, Release 0.6.2

after it finishes processing the current node, and it will mark the termination_condition attribute of the solver
results object with the interrupted status.

Solves launched through mpiexec typically can not be gracefully terminated using the Ctrl-C method. This is due to
the way the MPI process manager handles the SIGINT signal. However, the solve can be gracefully terminated by
sending a SIGUSR1 signal to the dispatcher process (this also works for the case when the solve was launched without
mpiexec). The pid and hostname of the dispatcher process are always output at the beginning of the solve.

$ mpiexec -n 4 python simple.py
Starting branch & bound solve:
- dispatcher pid: <pid> (<hostname>)

...

Assuming one is logged in to the host where the dispatcher process is running, the solve can be terminated using a
command such as:

$ kill -USR1 <pid>

2.3 Continuing a Solve After Stopping

It is possible to continue a solve with new termination criteria, starting with the candidate solution and remaining
queued nodes from a previous solve. The following code block shows how this can be done.

solver = pybnb.Solver()
results = solver.solve(problem,

absolute_gap=1e-4,
queue_tolerance=1e-8,
time_limit=10)

queue = solver.save_dispatcher_queue()
results = solver.solve(problem,

best_objective=results.objective,
best_node=results.best_node,
initialize_queue=queue,
absolute_gap=1e-8)

For the dispatcher process, the save_dispatcher_queue method returns an object of type
DispatcherQueueData, which can be assigned to the initialize_queue keyword of the solve method.
For processes that are not the dispatcher, this function returns None, which is the default value of the initialize_queue
keyword. The best_node attribute of the results object will be identical for all processes (possibly equal to None),
and can be directly assigned to the best_node solver option.

Note the use of the queue_tolerance solve option in the first solve above. If left unused, this option will be set equal
to the value of the absolute_gap setting (it is not affected by the relative_gap setting). The queue_tolerance setting
determines when new child nodes are eligible to enter the queue. If the difference between a child node’s bound
estimate and the best objective is less than or equal to the queue_tolerance (or worse than the best objective by any
amount), the child node will be discarded. Thus, in the example above, the first solve uses a queue_tolerance equal
to the absolute_gap used in the second solve to avoid discarding child nodes in the first solve that may be required to
achieve the tighter optimality settings used in the second solve.

Assigning the objective attribute of the results object to the best_objective solve option is only necessary if (1) the
initial solve was given a best_objective and the solver did not obtain a best node with a matching objective, or (2) if
the initial solve is unbounded. In the latter case, the best_node attribute of the results object will be None and the
dispatcher queue will be empty, so the unboundedness of the problem can only be communicated to the next solve via
the best_objective solve option. If one is careful about checking the status of the solution and no initial best objective
is used (both recommended), then the best_objective solver option can be left unused, as shown below:

12 Chapter 2. Advanced Usage

pybnb, Release 0.6.2

solver = pybnb.Solver()
results = solver.solve(problem,

asolute_gap=1e-4,
queue_tolerance=1e-8,
time_limit=10)

if results.solution_status in ("optimal",
"feasible"):

queue = solver.save_dispatcher_queue()
results = solver.solve(problem,

best_node=results.best_node,
initialize_queue=queue,
absolute_gap=1e-8)

2.4 Serialization Configuration

The following configuration items are available for controlling how node state is transmitted during a parallel solve:

2.4. Serialization Configuration 13

pybnb, Release 0.6.2

config item type default meaning
SERIALIZER str “pickle”

The serializer used to
transform the user-defined
node state into a byte
stream that can be
transmitted with MPI.
Allowed values are
“pickle”
and “dill”.

SERIALIZER_PROTOCOL_VERSIONint pickle.HIGHEST_PROTOCOL

The value assigned to the
protocol keyword of
the pickle or dill dumps
function.

COMPRESSION bool False

Indicates if serialized
node state should be
compressed using zlib.

MARSHAL_PROTOCOL_VERSIONint 2

The value assigned to the
version argument of
the marshal.dumps
function. The marshal
module
is used to serialize all
other node attributes
besides the user-defined
state. It is unlikely
that this setting would
need to be adjusted.

These settings are available as attributes on the pybnb.config object. This object can be modified by the user to,
for instance, change the serializer for the user-defined node state to the dill module. To do so, one would add the
following to the beginning of their code:

pybnb.config.SERIALIZER = "dill"

Each of these settings can also be modified through the environment by exporting a variable with PYBNB_ prepended
to the attribute name on the config object:

export PYBNB_SERIALIZER=pickle

The environment is checked during the first import of pybnb, so when configurations are applied by directly mod-
ifying the pybnb.config object, this will override those applied through environment variables. The pybnb.
config.reset(...) method can be called to restore all configuration options to their default setting (ignoring

14 Chapter 2. Advanced Usage

pybnb, Release 0.6.2

the environment if specified).

2.4. Serialization Configuration 15

pybnb, Release 0.6.2

16 Chapter 2. Advanced Usage

CHAPTER 3

pybnb.futures

The pybnb.futures module stores utilities that are still in the early phase of development. They will typically be fairly
well tested, but are subject to change or be removed without much notice from one release to the next.

3.1 Using a Nested Solve to Improve Parallel Performance

The NestedSolver object is a wrapper class for problems that provides an easy way to implement a custom two-
layer, parallel branch-and-bound solve. That is, a branch-and-bound solve where, at the top layer, a single dispatcher
serves nodes to worker processes over MPI, and those workers process each node by performing their own limited
branch-and-bound solve in serial, rather than simply evaluating the node bound and objective and returning its imme-
diate children to the dispatcher.

The above strategy can be implemented by simply wrapping the problem argument with this class before passing it to
the solver, as shown below.

results = solver.solve(
pybnb.futures.NestedSolver(problem,

queue_strategy=...,
track_bound=...,
time_limit=...,
node_limit=...),

queue_strategy='bound',
...)

The queue_strategy, track_bound, time_limit, and node_limit solve options can be passed into the NestedSolver
class when it is created to control these aspects of the sub-solves used by the workers when processing a node.

This kind of scheme can be useful for problems with relatively fast bound and objective computations, where the
overhead of updates to the central dispatcher over MPI is a clear bottleneck. It is important to consider, however, that
assigning large values to the node_limit or time_limit nested solve options may result in more work being performed
to achieve the same result as the non-nested case. As such, the use of this solution scheme may not always result in a
net benefit for the total solve time.

17

pybnb, Release 0.6.2

Next, we show how this class is used to maximize the parallel performance of the TSP example. Tests are run using
CPython 3.7 and PyPy3 6.0 (Python 3.5.3) on a laptop with a single quad-core 2.6 GHz Intel Core i7 processor.

The code block below shows the main call to the solver used in the TSP example, except it has been modified so that
the original problem is passed to the solver (no nested solve):

results = solver.solve(
problem,
queue_strategy='depth',
initialize_queue=queue,
best_node=best_node,
objective_stop=objective_stop)

Running the serial case as follows,

$ python -O tsp_naive.py fri26_d.txt

on CPython 3.7 we achieve a peak performance of ~19k nodes processed per second, and on PyPy3 6.0 the perfor-
mance peaks at ~150k nodes processed per second. Compare this with the parallel case (using three workers and one
dispatcher),

$ mpirun -np 4 python -O tsp_naive.py fri26_d.txt

where with CPython 3.7 we achieve a peak performance of ~21k nodes per second, and with PyPy3 6.0 the perfor-
mance actually drops to ~28k nodes per second (nowhere near the 3x increase one would hope for).

Now consider the TSP example in its original form, where the problem argument is wrapped with the
NestedSolver object:

results = solver.solve(
pybnb.futures.NestedSolver(problem,

queue_strategy='depth',
track_bound=False,
time_limit=1),

queue_strategy='depth',
initialize_queue=queue,
best_node=best_node,
objective_stop=objective_stop)

Running the parallel case, with CPython 3.7 we achieve a peak performance of ~60k nodes per second, and with
PyPy3 6.0 we achieve ~450k nodes per second!

18 Chapter 3. pybnb.futures

https://github.com/ghackebeil/pybnb/blob/master/examples/scripts/tsp/tsp_byvertex.py

CHAPTER 4

Reference

4.1 Quick Links

• pybnb.solve

• pybnb.Problem

• pybnb.Solver

• pybnb.SolverResults

• pybnb.SolutionStatus

• pybnb.TerminationCondition

• pybnb.QueueStrategy

4.2 Modules

4.2.1 pybnb.configuration

Configuration settings for node serialization.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

class pybnb.configuration.Configuration
The main configuration object.

SERIALIZER
The name of serialization module used to transmit node state. (default: “pickle”)

Type str, {‘pickle’, ‘dill’}

SERIALIZER_PROTOCOL_VERSION
The protocol argument passed to the dumps function of the selected serialization module. (default:
pickle.HIGHEST_PROTOCOL)

19

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

Type int

COMPRESSION
Indicates whether or not to compress the serialized node state using zlib. (default: False)

Type bool

MARSHAL_PROTOCOL_VERSION
The version argument passed to the marshal.dumps() function. (default: 2)

Type int

reset(use_environment=True)
Reset the configuration to default settings.

Parameters use_environment (bool, optional) – Controls whether or not to check
for environment variables to overwrite the default settings. (default: True)

4.2.2 pybnb.common

Basic definitions and utilities.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

pybnb.common.minimize = 1
The objective sense defining a minimization problem.

pybnb.common.maximize = -1
The objective sense defining a maximization problem.

pybnb.common.inf = inf
A floating point constant set to float('inf').

pybnb.common.nan = nan
A floating point constant set to float('nan').

class pybnb.common.QueueStrategy
Strategies for prioritizing nodes in the central dispatcher queue. For all strategies, ties are broken by insertion
order.

bound = 'bound'
The node with the worst bound is always selected next.

objective = 'objective'
The node with the best objective is always selected next.

breadth = 'breadth'
The node with the smallest tree depth is always selected next (i.e., breadth-first search).

depth = 'depth'
The node with the largest tree depth is always selected next (i.e., depth-first search).

local_gap = 'local_gap'
The node with the largest gap between its local objective and bound is always selected next.

fifo = 'fifo'
Nodes are served in first-in, first-out order.

lifo = 'lifo'
Nodes are served in last-in, first-out order.

random = 'random'
Nodes are assigned a random priority before entering the queue.

20 Chapter 4. Reference

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

custom = 'custom'
The node with the largest value stored in the queue_priority attribute is always selected next. Users
are expected to assign a priority to all nodes returned from the branch method on their problem.

class pybnb.common.SolutionStatus
Possible values assigned to the solution_status attribute of a SolverResults object returned from a
solve.

optimal = 'optimal'
Indicates that the best objective is finite and close enough to the global bound to satisfy the optimality
tolerances used for the solve.

feasible = 'feasible'
Indicates that the best objective is finite but not close enough to the global bound to satisfy the optimality
tolerances used for the solve.

infeasible = 'infeasible'
Indicates that both the best objective and global bound are equal to the infeasible objective value (+inf or
-inf depending on the sense).

unbounded = 'unbounded'
Indicates that both the best objective and global bound are equal to the unbounded objective value (+inf or
-inf depending on the sense).

invalid = 'invalid'
Indicates that the global bound is not a valid bound on the best objective found. This may be due to an
ill-defined problem or other numerical issues.

unknown = 'unknown'
Indicates that the global bound is finite, but no feasible (finite) objective was found.

class pybnb.common.TerminationCondition
Possible values assigned to the termination_condition attribute of a SolverResults object returned
from a solve.

optimality = 'optimality'
The dispatcher terminated the solve based on optimality criteria.

objective_limit = 'objective_limit'
The dispatcher terminated the solve based on the user-supplied limit on the objective or bound being
satisfied.

node_limit = 'node_limit'
The dispatcher terminated the solve due to the user-supplied explored node limit being surpassed.

time_limit = 'time_limit'
The dispatcher terminated the solve due to the user-supplied time limit being surpassed.

queue_empty = 'queue_empty'
The dispatcher terminated the solve due to the node queue becoming empty.

queue_limit = 'queue_limit'
The dispatcher terminated the solve due to the user-supplied queue size limit being exceeded.

interrupted = 'interrupted'
Solve termination was initiated by SIGINT or SIGUSR signal event.

4.2.3 pybnb.problem

Branch-and-bound problem definition.

4.2. Modules 21

pybnb, Release 0.6.2

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

class pybnb.problem.Problem
The abstract base class used for defining branch-and-bound problems.

abstractmethod sense()
Returns the objective sense for this problem.

Note: This method is abstract and must be defined by the user.

abstractmethod bound()
Returns a value that is a bound on the objective of the current problem state or self.
unbounded_objective() if no non-trivial bound is available.

Note: This method is abstract and must be defined by the user.

abstractmethod objective()
Returns a feasible value for the objective of the current problem state or self.
infeasible_objective() if the current state is not feasible.

Note: This method is abstract and must be defined by the user.

abstractmethod save_state(node)
Saves the current problem state into the given pybnb.node.Node object.

This method is guaranteed to be called once at the start of the solve by all processes involved to collect
the root node problem state, but it may be called additional times. When it is called for the root node, the
node.tree_depth will be zero.

Note: This method is abstract and must be defined by the user.

abstractmethod load_state(node)
Loads the problem state that is stored on the given pybnb.node.Node object.

Note: This method is abstract and must be defined by the user.

abstractmethod branch()
Returns a list of Node objects that partition the node state into zero or more children. This method can
also be defined as a generator.

Note: This method is abstract and must be defined by the user.

infeasible_objective()
Returns the value that represents an infeasible objective (i.e., +inf or -inf depending on the sense). The
Problem base class implements this method.

unbounded_objective()
Returns the value that represents an unbounded objective (i.e., +inf or -inf depending on the sense). The
Problem base class implements this method.

22 Chapter 4. Reference

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

notify_solve_begins(comm, worker_comm, convergence_checker)
Called when a branch-and-bound solver begins as solve. The Problem base class provides a default
implementation for this method that does nothing.

Parameters

• comm (mpi4py.MPI.Comm or None) – The full MPI communicator that includes all
processes. Will be None if MPI has been disabled.

• worker_comm (mpi4py.MPI.Comm or None) – The MPI communicator that includes
only worker processes. Will be None if MPI has been disabled.

• convergence_checker (ConvergenceChecker:) – The class used for compar-
ing the objective and bound values during the solve.

notify_new_best_node(node, current)
Called when a branch-and-bound solver receives a new best node from the dispatcher. The Problem base
class provides a default implementation for this method that does nothing.

Parameters

• node (Node) – The new best node.

• current (bool) – Indicates whether or not the node argument is the currently loaded
node (from the most recent load_state call).

notify_solve_finished(comm, worker_comm, results)
Called when a branch-and-bound solver finishes. The Problem base class provides a default implemen-
tation for this method that does nothing.

Parameters

• comm (mpi4py.MPI.Comm or None) – The full MPI communicator that includes all
processes. Will be None if MPI has been disabled.

• worker_comm (mpi4py.MPI.Comm or None) – The MPI communicator that includes
only worker processes. Will be None if MPI has been disabled.

• results (SolverResults) – The fully populated results container that will be re-
turned from the solver.

4.2.4 pybnb.node

Branch-and-bound node implementation.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

pybnb.node.dumps(obj)
Return the serialized representation of the object as a bytes object, using the serialization module set in the
current configuration.

pybnb.node.loads(data)
Read and return an object from the given serialized data, using the serialization module set in the current con-
figuration.

class pybnb.node.Node
A branch-and-bound node that stores problem state.

objective
The objective value for the node.

Type float

4.2. Modules 23

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

bound
The bound value for the node.

Type float

tree_depth
The tree depth of the node (0-based).

Type int

queue_priority
The queue priority of the node.

Type float or tuple of floats

state
The user specified node state.

4.2.5 pybnb.solver_results

Branch-and-bound solver results object.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

class pybnb.solver_results.SolverResults
Stores the results of a branch-and-bound solve.

solution_status
The solution status will be set to one of the strings documented by the SolutionStatus enum.

Type string

termination_condition
The solve termination condition, as determined by the dispatcher, will be set to one of the strings docu-
mented by the TerminationCondition enum.

Type string

objective
The best objective found.

Type float

bound
The global optimality bound.

Type float

absolute_gap
The absolute gap between the objective and bound. This will only be set when the solution status sf
“optimal” or “feasible”; otherwise, it will be None.

Type float or None

relative_gap
The relative gap between the objective and bound. This will only be set when the solution status sf “opti-
mal” or “feasible”; otherwise, it will be None.

Type float or None

nodes
The total number of nodes processes by all workers.

Type int

24 Chapter 4. Reference

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

wall_time
The process-local wall time (seconds). This is the only value on the results object that varies between
processes.

Type float

best_node
The node with the best objective obtained during the solve. Note that if the best_objective solver option
was used, the best_node on the results object may have an objective that is worse than the objective stored
on the results (or may be None).

Type Node

pprint(stream=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-8’>)
Prints a nicely formatted representation of the results.

Parameters stream (file-like object or string, optional) – A file-like ob-
ject or a filename where results should be written to. (default: sys.stdout)

write(stream, prefix=”, pretty=False)
Writes results in YAML format to a stream or file. Changing the parameter values from their defaults may
result in the output becoming non-compatible with the YAML format.

Parameters

• stream (file-like object or string) – A file-like object or a filename where
results should be written to.

• prefix (string, optional) – A string to use as a prefix for each line that is written.
(default: ‘’)

• pretty (bool, optional) – Indicates whether or not certain recognized attributes
should be formatted for more human-readable output. (default: False)

Example

>>> import six
>>> import pybnb
>>> results = pybnb.SolverResults()
>>> results.best_node = pybnb.Node()
>>> results.best_node.objective = 123
>>> out = six.StringIO()
>>> # the best_node is serialized
>>> results.write(out)
>>> del results
>>> import yaml
>>> results_dict = yaml.safe_load(out.getvalue())
>>> # de-serialize the best_node
>>> best_node = pybnb.node.loads(results_dict['best_node'])
>>> assert best_node.objective == 123

4.2.6 pybnb.solver

Branch-and-bound solver implementation.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

class pybnb.solver.Solver(comm=<class ’pybnb.solver._notset’>, dispatcher_rank=0)
A branch-and-bound solver.

4.2. Modules 25

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

Parameters

• comm (mpi4py.MPI.Comm, optional) – The MPI communicator to use. If unset, the
mpi4py.MPI.COMM_WORLD communicator will be used. Setting this keyword to None
will disable the use of MPI and avoid an attempted import of mpi4py.MPI (which avoids
triggering a call to MPI_Init()).

• dispatcher_rank (int, optional) – The process with this rank will be designated
as the dispatcher process. If MPI functionality is disabled (by setting comm=None), this
keyword must be 0. (default: 0)

is_worker
Indicates if this process has been designated as a worker.

is_dispatcher
Indicates if this process has been designated as the dispatcher.

comm
The full MPI communicator that includes the dispatcher and all workers. Will be None if MPI functionality
has been disabled.

worker_comm
The worker MPI communicator. Will be None on any processes for which Solver.is_worker is
False, or if MPI functionality has been disabled.

worker_count
The number of worker processes associated with this solver.

collect_worker_statistics()
Collect individual worker statistics about the most recent solve.

Returns A dictionary whose keys are the different statistics collected, where each entry is a list
storing a value for each worker.

Return type dict

save_dispatcher_queue()
Saves the dispatcher queue.

Returns queue – If this process is the dispatcher, this method will return an object storing any
nodes currently in the dispatcher queue. If this process is not the dispatcher, this method will
return None. The returned object can be used to reinitialize a solve (e.g., with different algo-
rithms settings) by assigning it to the initialize_queue keyword of the Solver.solve()
method.

Return type pybnb.dispatcher.DispatcherQueueData or None

solve(problem, best_objective=None, best_node=None, disable_objective_call=False,
absolute_gap=0, relative_gap=None, scale_function=<function _default_scale>,
queue_tolerance=<class ’pybnb.convergence_checker._auto_queue_tolerance’>,
branch_tolerance=0, comparison_tolerance=0, objective_stop=None, bound_stop=None,
node_limit=None, time_limit=None, queue_limit=None, track_bound=True,
initialize_queue=None, queue_strategy=’bound’, log_interval_seconds=1.0,
log_new_incumbent=True, log=<class ’pybnb.solver._notset’>, dis-
able_signal_handlers=False)

Solve a problem using branch-and-bound.

Note: Parameters for this function are treated differently depending on whether the process is a worker
or dispatcher. For the serial case (no MPI), the single process is both a worker and a dispatcher. For
the parallel case, exactly one process is a dispatcher and all other processes are workers. A (W) in the
parameter description indicates that it is only used by worker processes (ignored otherwise). A (D) in the

26 Chapter 4. Reference

pybnb, Release 0.6.2

parameter description indicates that it is only used by the dispatcher process (ignored otherwise). An (A)
indicates that it is used by all processes, and it is assumed the same value is provided for each process;
otherwise, the behavior is undefined.

Parameters

• problem (pybnb.Problem) – An object defining a branch-and-bound problem.

• best_objective (float, optional) – Initializes the solve with an assumed best
objective. Both this and the best_node option can be set to different values on all processes.
The dispatcher will collect all values and use the best. Note that setting this option at, or
too close to, the true optimal objective value may prevent the solver from collecting a
node that stores the optimal user state information, so use this option with care. The
recommended way to re-continue a solve from a known candidate solution is to assign the
best_node attribute of a results object to the best_node solve option. Also note that the
best node will be tracked separately from the given initial best objective until a node is
found that improves upon the best objective. If this never happens, the best_node attribute
on the solver results may be None or may have an objective that is worse than the objective
attribute of the solver results. (default: None)

• best_node (Node, optional) – Initializes the solve with an assumed best node. This
option can (and should) be used in place of the best_objective option when a best node
from a previous solve has been collected. It can also be assigned a node object that was
created manually by the user. The objective attribute is the only property of the node that
will affect the solve. It must be set to a numeric value. (default: None)

• disable_objective_call (bool, optional) – (W) Disables requests for an
objective value from subproblems. (default: False)

• absolute_gap (float, optional) – (A) The maximum absolute difference be-
tween the global bound and best objective for the problem to be considered solved to
optimality. Setting to None will disable this optimality check. By default, this option also
controls eligibility for the queue. See the “queue_tolerance” setting for more information.
(default: 0)

• relative_gap (float, optional) – (A) The maximum relative difference (abso-
lute difference scaled by max{1.0,|objective|}) between the global bound and best objective
for the problem to be considered solved to optimality. The default setting of None means
this optimality check is not used. (default: None)

• scale_function (function, optional) – (A) A function with signature
f(bound, objective) -> float that returns a positive scale factor used to convert the abso-
lute difference between the bound and objective into a relative difference. The relative
difference is compared with the relative_gap convergence tolerance to determine if the
solver should terminate. The default is equivalent to max{1.0,|objective|}. Other examples
one could use are max{|bound|,|objective|}, (|bound|+|objective|)/2, etc.

• queue_tolerance (float, optional) – (A) The absolute tolerance used when
deciding if a node is eligible to enter the queue. The difference between the node bound
and the incumbent objective must be greater than this value. Leaving this argument at its
default value indicates that this tolerance should be set equal to the “absolute_gap” setting.
Setting this to zero means that nodes whose bound is equal to the incumbent objective are
not eligible to enter the queue. Setting this to larger values can be used to limit the queue
size, but it should be kept small enough to allow absolute and relative optimality tolerances
to be met. This option can also be set to None to allow nodes with a bound equal to (but
not greater than) the incumbent objective to enter the queue.

4.2. Modules 27

pybnb, Release 0.6.2

• branch_tolerance (float, optional) – (A) The absolute tolerance used when
deciding if the computed objective and bound for a node are sufficiently different to branch
into the node. The default value of zero means that branching will occur if the bound is
not exactly equal to the objective. This option can be set to None to enable branching for
nodes with a bound and objective that are exactly equal. (default: 0)

• comparison_tolerance (float, optional) – (A) The absolute tolerance used
when deciding if two objective or bound values are sufficiently different to be considered
improved or worsened. This tolerance controls when the solver considers a new incumbent
objective to be found. It also controls when warnings are output about bounds becoming
worse on child nodes. Setting this to larger values can be used to avoid the above solver
actions due to insignificant numerical differences, but it is better to deal with these nu-
merical issues by rounding numbers to a reliable precision before returning them from the
problem methods. (default: 0)

• objective_stop (float, optional) – (A) If provided, the solve will terminate
when a feasible objective is found that is at least as good as the specified value, and the
termination_condition flag on the results object will be set to ‘objective_limit’. If this
value is infinite, the solve will terminate as soon as a finite objective is found. (default:
None)

• bound_stop (float, optional) – (A) If provided, the solve will terminate when
the global bound on the objective is at least as good as the specified value, and the termi-
nation_condition flag on the results object will be set to ‘objective_limit’. If this value is
infinite, the solve will terminate as soon as a finite bound is found. (default: None)

• node_limit (int, optional) – (D) If provided, the solve will begin to termi-
nate once this many nodes have been served from the dispatcher queue, and the termi-
nation_condition flag on the results object will be set to ‘node_limit’. (default: None)

• time_limit (float, optional) – (D) If provided, the solve will begin to terminate
once this amount of time has passed, and the termination_condition flag on the results
object will be set to ‘time_limit’. Note that the solve may run for an arbitrarily longer
amount of time, depending how long worker processes spend completing their final task.
(default: None)

• queue_limit (int, optional) – (D) If provided, the solve will begin to terminate
once the size of the dispatcher queue exceeds this amount, and the termination_condition
flag on the results object will be set to ‘queue_limit’. Note that the queue may become
arbitrarily larger than this limit, depending how many child nodes are returned from worker
processes on their final update. (default: None)

• track_bound (bool, optional) – (D) Indicates whether the dispatcher should
track the global queue bound while running. Setting this to false can reduce the overhead
of dispatcher updates for some priority queue strategies. (default: True)

• initialize_queue (pybnb.dispatcher.DispatcherQueueData, optional)
– (D) Initializes the dispatcher queue with that remaining from a previous solve (ob-
tained by calling Solver.save_dispatcher_queue() after the solve). If left as
None, the queue will be initialized with a single root node created by calling problem.
save_state. (default: None)

• queue_strategy (QueueStrategy or tuple) – (D) Sets the strategy for prioritizing
nodes in the central dispatcher queue. See the QueueStrategy enum for the list of
acceptable values. This keyword can be assigned one of the enumeration attributes or an
equivalent string name. This keyword can also be assigned a tuple of choices to define a
lexicographic sorting strategy. (default: ‘bound’)

28 Chapter 4. Reference

pybnb, Release 0.6.2

• log_interval_seconds (float, optional) – (D) The approximate time (in
seconds) between solver log updates. More time may pass between log updates if no
updates have been received from worker processes, and less time may pass if a new in-
cumbent objective is found. (default: 1.0)

• log_new_incumbent (bool, optional) – (D) Controls whether updates to the
best objective are logged immediately (overriding the log interval). Setting this to false
can be useful when frequent updates to the incumbent are expected and the additional
logging slows down the dispatcher. (default: True)

• log (logging.Logger, optional) – (D) A log object where solver output should
be sent. The default value causes all output to be streamed to the console. Setting to None
disables all output.

• disable_signal_handlers (bool, optional) – (D) Setting to true disables
the registering of signal handlers that allow gracefully terminating a solve early. (default:
False)

Returns results – An object storing information about the solve.

Return type SolverResults

pybnb.solver.summarize_worker_statistics(stats, stream=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’ encoding=’UTF-
8’>)

Writes a summary of workers statistics to an output stream.

Parameters

• stats (dict) – A dictionary of worker statistics returned from a call to
collect_worker_statistics().

• stream (file-like object, or string, optional) – A file-like object or a
filename where results should be written to. (default: sys.stdout)

pybnb.solver.solve(problem, comm=<class ’pybnb.solver._notset’>, dispatcher_rank=0,
log_filename=None, results_filename=None, **kwds)

Solves a branch-and-bound problem and returns the solution.

Note: This function also collects and summarizes runtime workload statistics, which may introduce additional
overhead. This overhead can be avoided by directly instantiating a Solver object and calling the Solver.
solve() method.

Parameters

• problem (pybnb.Problem) – An object that defines a branch-and-bound problem

• comm (mpi4py.MPI.Comm, optional) – The MPI communicator to use. If unset, the
mpi4py.MPI.COMM_WORLD communicator will be used. Setting this keyword to None
will disable the use of MPI and avoid an attempted import of mpi4py.MPI (which avoids
triggering a call to MPI_Init()).

• dispatcher_rank (int, optional) – The process with this rank will be designated
the dispatcher process. If MPI functionality is disabled (by setting comm=None, or when
comm.size==1), this keyword must be left at 0. (default: 0)

• log_filename (string, optional) – A filename where solver output should be
sent in addition to console. This keyword will be ignored if the log keyword is set. (default:
None)

4.2. Modules 29

pybnb, Release 0.6.2

• results_filename (string, optional) – Saves the solver results into a YAML-
formatted file with the given name. (default: None)

• **kwds – Additional keywords to be passed to Solver.solve(). See that method for
additional keyword documentation.

Returns results – An object storing information about the solve.

Return type SolverResults

4.2.7 pybnb.convergence_checker

Convergence checking implementation.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

pybnb.convergence_checker.compute_absolute_gap(sense, bound, objective)
Returns the absolute gap between the bound and the objective, respecting the sign relative to the objective sense
of this problem.

pybnb.convergence_checker.compute_relative_gap(sense, bound, objective,
scale=<function _default_scale>)

Returns the relative gap between the bound and the objective, respecting the sign relative to the objective sense
of this problem.

class pybnb.convergence_checker.ConvergenceChecker(sense, absolute_gap=0,
relative_gap=None,
scale_function=<function
_default_scale>,
queue_tolerance=<class
’pybnb.convergence_checker._auto_queue_tolerance’>,
branch_tolerance=0, com-
parison_tolerance=0,
objective_stop=None,
bound_stop=None)

A class used to check convergence.

Parameters

• sense ({minimize, maximize}) – The objective sense for the problem.

• absolute_gap (float, optional) – The absolute difference between the objective
and bound that determines optimality. By default, this option also controls eligibility for the
queue. See the “queue_tolerance” setting for more information. (default: 0)

• relative_gap (float, optional) – The relative difference between the objective
and bound that determines optimality. (default: None)

• scale_function (function, optional) – A function with signature f(bound, ob-
jective) -> float that returns a positive scale factor used to convert the absolute difference
between the bound and objective into a relative difference. The relative difference is com-
pared with the relative_gap convergence tolerance to determine if the solver should termi-
nate. The default is equivalent to max{1.0,|objective|}. Other examples one could use are
max{|bound|,|objective|}, (|bound|+|objective|)/2, etc.

• queue_tolerance (float, optional) – The absolute tolerance used when decid-
ing if a node is eligible to enter the queue. The difference between the node bound and the
incumbent objective must be greater than this value. Leaving this argument at its default
value indicates that this tolerance should be set equal to the “absolute_gap” setting. Setting

30 Chapter 4. Reference

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

this to zero means that nodes whose bound is equal to the incumbent objective are not eligi-
ble to enter the queue. Setting this to larger values can be used to limit the queue size, but it
should be kept small enough to allow absolute and relative optimality tolerances to be met.
This option can also be set to None to allow nodes with a bound equal to (but not greater
than) the incumbent objective to enter the queue.

• branch_tolerance (float, optional) – The absolute tolerance used when de-
ciding if the computed objective and bound for a node are sufficiently different to branch
into the node. The default value of zero means that branching will occur if the bound is not
exactly equal to the objective. This option can be set to None to enable branching for nodes
with a bound and objective that are exactly equal. (default: 0)

• comparison_tolerance (float, optional) – The absolute tolerance used when
deciding if two objective or bound values are sufficiently different to be considered improved
or worsened. This tolerance controls when the solver considers a new incumbent objective
to be found. It also controls when warnings are output about bounds becoming worse on
child nodes. Setting this to larger values can be used to avoid the above solver actions due
to insignificant numerical differences, but it is better to deal with these numerical issues by
rounding numbers to a reliable precision before returning them from the problem methods.
(default: 0)

• objective_stop (float, optional) – If provided, the “objective_limit” termina-
tion criteria is met when a feasible objective is found that is at least as good as the specified
value. If this value is infinite, the termination criteria is met as soon as a finite objective is
found. (default: None)

• bound_stop (float, optional) – If provided, the “objective_limit” termination cri-
teria is met when the best bound on the objective is at least as good as the specified value.
If this value is infinite, the termination criteria is met as soon as a finite objective is found.
(default: None)

check_termination_criteria(global_bound, best_objective)
Checks if any termination criteria are met and returns the corresponding TerminationCondition
enum value; otherwise, None is returned.

objective_is_optimal(objective, bound)
Determines if the objective is optimal by checking if the optimality gap is small enough relative to the
absolute gap or relative gap settings.

compute_absolute_gap(bound, objective)
Returns the absolute gap between the bound and the objective, respecting the sign relative to the objective
sense of this problem.

compute_relative_gap(bound, objective)
Returns the relative gap between the bound and the objective, respecting the sign relative to the objective
sense of this problem.

eligible_for_queue(bound, objective)
Returns True when the queue object with the given bound is eligible for the queue relative to the given
objective.

eligible_to_branch(bound, objective)
Returns True when the bound and objective are sufficiently far apart to allow branching.

bound_worsened(new, old)
Returns True when the new bound is worse than the old bound by greater than the comparison tolerance.

objective_improved(new, old)
Returns True when the new objective is better than the old objective by greater than the comparison toler-
ance.

4.2. Modules 31

pybnb, Release 0.6.2

worst_bound(*args, **kwds)
Returns the worst bound, as defined by the objective sense, from a given iterable of bound values. This
function passes all keywords and arguments directly to the built-ins min and max.

best_bound(*args, **kwds)
Returns the best bound, as defined by the objective sense, from a given iterable of bound values. This
function passes all keywords and arguments directly to the built-ins min and max.

worst_objective(*args, **kwds)
Returns the worst objective, as defined by the objective sense, from a given iterable of objective values.
This function passes all keywords and arguments directly to the built-ins min and max.

best_objective(*args, **kwds)
Returns the best objective, as defined by the objective sense, from a given iterable of objective values. This
function passes all keywords and arguments directly to the built-ins min and max.

4.2.8 pybnb.priority_queue

A collection of priority queue implementations that can be used by the dispatcher.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

class pybnb.priority_queue.IPriorityQueue
Bases: object

The abstract interface for priority queues that store node data for the dispatcher.

size()
Returns the size of the queue.

put(node)
Puts an node in the queue, possibly updating the value of queue_priority , depending on the queue
implementation. This method returns a unique counter associated with each put.

get()
Returns the next node in the queue. If the queue is empty, returns None.

bound()
Returns the weakest bound of all nodes in the queue. If the queue is empty, returns None.

filter(func)
Removes nodes from the queue for which func(node) returns False. The list of nodes removed is returned.
If the queue is empty or no nodes are removed, the returned list will be empty.

items()
Iterates over the queued nodes in arbitrary order without modifying the queue.

class pybnb.priority_queue.WorstBoundFirstPriorityQueue(sense, track_bound)
Bases: pybnb.priority_queue.IPriorityQueue

A priority queue implementation that serves nodes with the worst bound first.

Parameters

• sense ({minimize, maximize}) – The objective sense for the problem.

• track_bound (bool) – Indicates whether or not to track the global queue bound. Note
that this particular queue implementation always tracks the global bound. This argument is
ignored.

size()
Returns the size of the queue.

32 Chapter 4. Reference

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

put(node)
Puts an node in the queue, possibly updating the value of queue_priority , depending on the queue
implementation. This method returns a unique counter associated with each put.

get()
Returns the next node in the queue. If the queue is empty, returns None.

bound()
Returns the weakest bound of all nodes in the queue. If the queue is empty, returns None.

filter(func)
Removes nodes from the queue for which func(node) returns False. The list of nodes removed is returned.
If the queue is empty or no nodes are removed, the returned list will be empty.

items()
Iterates over the queued nodes in arbitrary order without modifying the queue.

class pybnb.priority_queue.CustomPriorityQueue(sense, track_bound,
_queue_type_=<class
’pybnb.priority_queue._NoThreadingMaxPriorityFirstQueue’>)

Bases: pybnb.priority_queue.IPriorityQueue

A priority queue implementation that can handle custom node priorities. It uses an additional data structure to
reduce the amount of time it takes to compute a queue bound.

Parameters

• sense ({minimize, maximize}) – The objective sense for the problem.

• track_bound (bool) – Indicates whether or not to track the global queue bound.

size()
Returns the size of the queue.

put(node)
Puts an node in the queue, possibly updating the value of queue_priority , depending on the queue
implementation. This method returns a unique counter associated with each put.

get()
Returns the next node in the queue. If the queue is empty, returns None.

bound()
Returns the weakest bound of all nodes in the queue. If the queue is empty, returns None.

filter(func)
Removes nodes from the queue for which func(node) returns False. The list of nodes removed is returned.
If the queue is empty or no nodes are removed, the returned list will be empty.

items()
Iterates over the queued nodes in arbitrary order without modifying the queue.

class pybnb.priority_queue.BestObjectiveFirstPriorityQueue(sense, track_bound,
_queue_type_=<class
’pybnb.priority_queue._NoThreadingMaxPriorityFirstQueue’>)

Bases: pybnb.priority_queue.CustomPriorityQueue

A priority queue implementation that serves nodes with the best objective first.

sense [{minimize, maximize}] The objective sense for the problem.

put(node)
Puts an node in the queue, possibly updating the value of queue_priority , depending on the queue
implementation. This method returns a unique counter associated with each put.

4.2. Modules 33

pybnb, Release 0.6.2

bound()
Returns the weakest bound of all nodes in the queue. If the queue is empty, returns None.

filter(func)
Removes nodes from the queue for which func(node) returns False. The list of nodes removed is returned.
If the queue is empty or no nodes are removed, the returned list will be empty.

get()
Returns the next node in the queue. If the queue is empty, returns None.

items()
Iterates over the queued nodes in arbitrary order without modifying the queue.

size()
Returns the size of the queue.

class pybnb.priority_queue.BreadthFirstPriorityQueue(sense, track_bound,
_queue_type_=<class
’pybnb.priority_queue._NoThreadingMaxPriorityFirstQueue’>)

Bases: pybnb.priority_queue.CustomPriorityQueue

A priority queue implementation that serves nodes in breadth-first order.

sense [{minimize, maximize}] The objective sense for the problem.

put(node)
Puts an node in the queue, possibly updating the value of queue_priority , depending on the queue
implementation. This method returns a unique counter associated with each put.

bound()
Returns the weakest bound of all nodes in the queue. If the queue is empty, returns None.

filter(func)
Removes nodes from the queue for which func(node) returns False. The list of nodes removed is returned.
If the queue is empty or no nodes are removed, the returned list will be empty.

get()
Returns the next node in the queue. If the queue is empty, returns None.

items()
Iterates over the queued nodes in arbitrary order without modifying the queue.

size()
Returns the size of the queue.

class pybnb.priority_queue.DepthFirstPriorityQueue(sense, track_bound,
_queue_type_=<class
’pybnb.priority_queue._NoThreadingMaxPriorityFirstQueue’>)

Bases: pybnb.priority_queue.CustomPriorityQueue

A priority queue implementation that serves nodes in depth-first order.

sense [{minimize, maximize}] The objective sense for the problem.

put(node)
Puts an node in the queue, possibly updating the value of queue_priority , depending on the queue
implementation. This method returns a unique counter associated with each put.

bound()
Returns the weakest bound of all nodes in the queue. If the queue is empty, returns None.

filter(func)
Removes nodes from the queue for which func(node) returns False. The list of nodes removed is returned.
If the queue is empty or no nodes are removed, the returned list will be empty.

34 Chapter 4. Reference

pybnb, Release 0.6.2

get()
Returns the next node in the queue. If the queue is empty, returns None.

items()
Iterates over the queued nodes in arbitrary order without modifying the queue.

size()
Returns the size of the queue.

class pybnb.priority_queue.FIFOQueue(sense, track_bound)
Bases: pybnb.priority_queue.CustomPriorityQueue

A priority queue implementation that serves nodes in first-in, first-out order.

sense [{minimize, maximize}] The objective sense for the problem.

put(node)
Puts an node in the queue, possibly updating the value of queue_priority , depending on the queue
implementation. This method returns a unique counter associated with each put.

bound()
Returns the weakest bound of all nodes in the queue. If the queue is empty, returns None.

filter(func)
Removes nodes from the queue for which func(node) returns False. The list of nodes removed is returned.
If the queue is empty or no nodes are removed, the returned list will be empty.

get()
Returns the next node in the queue. If the queue is empty, returns None.

items()
Iterates over the queued nodes in arbitrary order without modifying the queue.

size()
Returns the size of the queue.

class pybnb.priority_queue.LIFOQueue(sense, track_bound)
Bases: pybnb.priority_queue.CustomPriorityQueue

A priority queue implementation that serves nodes in last-in, first-out order.

sense [{minimize, maximize}] The objective sense for the problem.

put(node)
Puts an node in the queue, possibly updating the value of queue_priority , depending on the queue
implementation. This method returns a unique counter associated with each put.

bound()
Returns the weakest bound of all nodes in the queue. If the queue is empty, returns None.

filter(func)
Removes nodes from the queue for which func(node) returns False. The list of nodes removed is returned.
If the queue is empty or no nodes are removed, the returned list will be empty.

get()
Returns the next node in the queue. If the queue is empty, returns None.

items()
Iterates over the queued nodes in arbitrary order without modifying the queue.

size()
Returns the size of the queue.

4.2. Modules 35

pybnb, Release 0.6.2

class pybnb.priority_queue.RandomPriorityQueue(sense, track_bound,
_queue_type_=<class
’pybnb.priority_queue._NoThreadingMaxPriorityFirstQueue’>)

Bases: pybnb.priority_queue.CustomPriorityQueue

A priority queue implementation that assigns a random priority to each incoming node.

sense [{minimize, maximize}] The objective sense for the problem.

put(node)
Puts an node in the queue, possibly updating the value of queue_priority , depending on the queue
implementation. This method returns a unique counter associated with each put.

bound()
Returns the weakest bound of all nodes in the queue. If the queue is empty, returns None.

filter(func)
Removes nodes from the queue for which func(node) returns False. The list of nodes removed is returned.
If the queue is empty or no nodes are removed, the returned list will be empty.

get()
Returns the next node in the queue. If the queue is empty, returns None.

items()
Iterates over the queued nodes in arbitrary order without modifying the queue.

size()
Returns the size of the queue.

class pybnb.priority_queue.LocalGapPriorityQueue(sense, track_bound,
_queue_type_=<class
’pybnb.priority_queue._NoThreadingMaxPriorityFirstQueue’>)

Bases: pybnb.priority_queue.CustomPriorityQueue

A priority queue implementation that serves nodes with the largest gap between the local objective and bound
first.

sense [{minimize, maximize}] The objective sense for the problem.

put(node)
Puts an node in the queue, possibly updating the value of queue_priority , depending on the queue
implementation. This method returns a unique counter associated with each put.

bound()
Returns the weakest bound of all nodes in the queue. If the queue is empty, returns None.

filter(func)
Removes nodes from the queue for which func(node) returns False. The list of nodes removed is returned.
If the queue is empty or no nodes are removed, the returned list will be empty.

get()
Returns the next node in the queue. If the queue is empty, returns None.

items()
Iterates over the queued nodes in arbitrary order without modifying the queue.

size()
Returns the size of the queue.

class pybnb.priority_queue.LexicographicPriorityQueue(queue_types, sense,
track_bound)

Bases: pybnb.priority_queue.CustomPriorityQueue

36 Chapter 4. Reference

pybnb, Release 0.6.2

A priority queue implementation that serves nodes with the largest gap between the local objective and bound
first.

sense [{minimize, maximize}] The objective sense for the problem.

put(node)
Puts an node in the queue, possibly updating the value of queue_priority , depending on the queue
implementation. This method returns a unique counter associated with each put.

bound()
Returns the weakest bound of all nodes in the queue. If the queue is empty, returns None.

filter(func)
Removes nodes from the queue for which func(node) returns False. The list of nodes removed is returned.
If the queue is empty or no nodes are removed, the returned list will be empty.

get()
Returns the next node in the queue. If the queue is empty, returns None.

items()
Iterates over the queued nodes in arbitrary order without modifying the queue.

size()
Returns the size of the queue.

pybnb.priority_queue.PriorityQueueFactory(name, *args, **kwds)
Returns a new instance of the priority queue type registered under the given name.

pybnb.priority_queue.register_queue_type(name, cls)
Registers a new priority queue class with the PriorityQueueFactory.

4.2.9 pybnb.dispatcher

Branch-and-bound dispatcher implementation.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

class pybnb.dispatcher.DispatcherQueueData(nodes, worst_terminal_bound, sense)
A namedtuple storing data that can be used to initialize a dispatcher queue.

nodes
A list of Node objects.

Type list

worst_terminal_bound
The worst bound of any node where branching did not continue.

Type float or None

sense
The objective sense for the problem that produced this queue.

Type {minimize, maximize}

bound()
Returns the global bound defined by this queue data.

class pybnb.dispatcher.StatusPrinter(dispatcher, log, log_interval_seconds=1.0)
Logs status information about the branch-and-bound solve.

Parameters

4.2. Modules 37

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

• dispatcher (pybnb.dispatcher.Dispatcher) – The central dispatcher that will
be monitored.

• log (logging.Logger) – A log object where solver output should be sent.

• log_interval_seconds (float) – The approximate maximum time (in seconds) be-
tween solver log updates. More time may pass between log updates if no updates have been
received from any workers, and less time may pass if a new incumbent is found. (default:
1.0)

log_info(msg)
Pass a message to log.info

log_warning(msg)
Pass a message to log.warning

log_debug(msg)
Pass a message to log.debug

log_error(msg)
Pass a message to log.error

log_critical(msg)
Pass a message to log.critical

new_objective(report=True)
Indicate that a new objective has been found

Parameters report (bool, optional) – Indicate whether or not to force the next tic log
output. (default: False)

tic(force=False)
Provide an opportunity to log output if certain criteria are met.

Parameters force (bool, optional) – Indicate whether or not to force logging of output,
even if logging criteria are not met. (default: False)

class pybnb.dispatcher.DispatcherBase
The base dispatcher implementation with some core functionality shared by the distributed and local implemen-
tations.

initialize(best_objective, best_node, initialize_queue, queue_strategy, converger, node_limit,
time_limit, queue_limit, track_bound, log, log_interval_seconds, log_new_incumbent)

Initialize the dispatcher for a new solve.

Parameters

• best_objective (float) – The assumed best objective to start with.

• best_node (Node) – A node storing the assumed best objective.

• initialize_queue (pybnb.dispatcher.DispatcherQueueData) – The
initial queue.

• queue_strategy (QueueStrategy) – Sets the strategy for prioritizing nodes in
the central dispatcher queue. See the QueueStrategy enum for the list of acceptable
values.

• converger (pybnb.convergence_checker.ConvergenceChecker) – The
branch-and-bound convergence checker object.

• node_limit (int or None) – An integer representing the maximum number of
nodes to processes before beginning to terminate the solve. If None, no node limit will be
enforced.

38 Chapter 4. Reference

pybnb, Release 0.6.2

• time_limit (float or None) – The maximum amount of time to spend processing
nodes before beginning to terminate the solve. If None, no time limit will be enforced.

• queue_limit (int or None) – The maximum allowed queue size. If exceeded, the
solve will terminate. If None, no size limit on the queue will be enforced.

• log (logging.Logger) – A log object where solver output should be sent.

• log_interval_seconds (float) – The approximate maximum time (in seconds)
between solver log updates. More time may pass between log updates if no updates have
been received from any workers, and less time may pass if a new incumbent is found.

• log_new_incumbent (bool) – Controls whether updates to the best objective are
logged immediately (overriding the log interval). Setting this to false can be useful when
frequent updates to the incumbent are expected and the additional logging slows down the
dispatcher.

log_info(msg)
Pass a message to log.info

log_warning(msg)
Pass a message to log.warning

log_debug(msg)
Pass a message to log.debug

log_error(msg)
Pass a message to log.error

log_critical(msg)
Pass a message to log.critical

save_dispatcher_queue()
Saves the current dispatcher queue. The result can be used to re-initialize a solve.

Returns queue_data – An object storing information that can be used to re-initialize the dis-
patcher queue to its current state.

Return type pybnb.dispatcher.DispatcherQueueData

class pybnb.dispatcher.DispatcherLocal
The central dispatcher for a serial branch-and-bound algorithm.

initialize(best_objective, best_node, initialize_queue, queue_strategy, converger, node_limit,
time_limit, queue_limit, track_bound, log, log_interval_seconds, log_new_incumbent)

Initialize the dispatcher. See the pybnb.dispatcher.DispatcherBase.initialize()
method for argument descriptions.

update(best_objective, best_node, terminal_bound, solve_info, node_list)
Update local worker information.

Parameters

• best_objective (float or None) – A new potential best objective found by the
worker.

• best_node (Node or None) – A new potential best node found by the worker.

• terminal_bound (float or None) – The worst bound of any terminal nodes that
were processed by the worker since the last update.

• solve_info (_SolveInfo) – The most up-to-date worker solve information.

• node_list (list) – A list of nodes to add to the queue.

4.2. Modules 39

pybnb, Release 0.6.2

Returns

• solve_finished (bool) – Indicates if the dispatcher has terminated the solve.

• new_objective (float) – The best objective known to the dispatcher.

• best_node (Node or None) – The best node known to the dispatcher.

• data (Node or None) – If solve_finished is false, a new node for the worker to process.
Otherwise, a tuple containing the global bound, the termination condition string, and the
number of explored nodes.

class pybnb.dispatcher.DispatcherDistributed(comm)
The central dispatcher for a distributed branch-and-bound algorithm.

Parameters comm (mpi4py.MPI.Comm, optional) – The MPI communicator to use. If set to
None, this will disable the use of MPI and avoid an attempted import of mpi4py.MPI (which
avoids triggering a call to MPI_Init()).

initialize(best_objective, best_node, initialize_queue, queue_strategy, converger, node_limit,
time_limit, queue_limit, track_bound, log, log_interval_seconds, log_new_incumbent)

Initialize the dispatcher. See the pybnb.dispatcher.DispatcherBase.initialize()
method for argument descriptions.

update(best_objective, best_node, terminal_bound, solve_info, node_list, source)
Update local worker information.

Parameters

• best_objective (float or None) – A new potential best objective found by the
worker.

• best_node (Node or None) – A new potential best node found by the worker.

• terminal_bound (float or None) – The worst bound of any terminal nodes that
were processed by the worker since the last update.

• solve_info (_SolveInfo) – The most up-to-date worker solve information.

• node_list (list) – A list of nodes to add to the queue.

• source (int) – The worker process rank that the update came from.

Returns

• solve_finished (bool) – Indicates if the dispatcher has terminated the solve.

• new_objective (float) – The best objective value known to the dispatcher.

• best_node (Node or None) – The best node known to the dispatcher.

• data (array.array or None) – If solve_finished is false, a data array representing a
new node for the worker to process. Otherwise, a tuple containing the global bound, the
termination condition string, and the number of explored nodes.

serve()
Start listening for distributed branch-and-bound commands and map them to commands in the local dis-
patcher interface.

save_dispatcher_queue()
Saves the current dispatcher queue. The result can be used to re-initialize a solve.

Returns queue_data – An object storing information that can be used to re-initialize the dis-
patcher queue to its current state.

Return type pybnb.dispatcher.DispatcherQueueData

40 Chapter 4. Reference

pybnb, Release 0.6.2

4.2.10 pybnb.dispatcher_proxy

A proxy interface to the central dispatcher that is used by branch-and-bound workers.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

pybnb.dispatcher_proxy.ProcessType = _ProcessType(worker=0, dispatcher=1)
A namespace of typecodes that are used to categorize processes during dispatcher startup.

pybnb.dispatcher_proxy.DispatcherAction = _DispatcherAction(update=111, finalize=211, log_info=311, log_warning=411, log_debug=511, log_error=611, log_critical=711, stop_listen=811)
A namespace of typecodes that are used to categorize messages received by the dispatcher from workers.

pybnb.dispatcher_proxy.DispatcherResponse = _DispatcherResponse(work=1111, nowork=2111)
A namespace of typecodes that are used to categorize responses received by workers from the dispatcher.

class pybnb.dispatcher_proxy.DispatcherProxy(comm)
A proxy class for interacting with the central dispatcher via message passing.

update(best_objective, best_node, previous_bound, solve_info, node_list_)
A proxy to pybnb.dispatcher.Dispatcher.update().

log_info(msg)
A proxy to pybnb.dispatcher.Dispatcher.log_info().

log_warning(msg)
A proxy to pybnb.dispatcher.Dispatcher.log_warning().

log_debug(msg)
A proxy to pybnb.dispatcher.Dispatcher.log_debug().

log_error(msg)
A proxy to pybnb.dispatcher.Dispatcher.log_error().

log_critical(msg)
A proxy to pybnb.dispatcher.Dispatcher.log_critical().

stop_listen()
Tell the dispatcher to abruptly stop the listen loop.

4.2.11 pybnb.mpi_utils

Various utility function for MPI.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

class pybnb.mpi_utils.Message(comm)
A helper class for probing for and receiving messages. A single instance of this class is meant to be reused.

Parameters comm (mpi4py.MPI.Comm) – The MPI communicator to use.

probe(**kwds)
Perform a blocking test for a message

recv(datatype=None, data=None)
Complete the receive for the most recent message probe and return the data as a numeric array or a string,
depending on the datatype keyword.

Parameters

• datatype ({mpi4py.MPI.DOUBLE, mpi4py.MPI.CHAR}, optional) – An MPI
datatype used to interpret the received data. If None, mpi4py.MPI.DOUBLE will be
used. (default: None)

4.2. Modules 41

mailto:gabe.hackebeil@gmail.com
mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

• data (array.array or None, optional) – An existing data array to store data
into. If None, one will be created. (default: None)

pybnb.mpi_utils.recv_nothing(comm, status)
A helper function for receiving an empty message. This function is not thread safe.

Parameters

• comm (mpi4py.MPI.Comm) – An MPI communicator.

• status (mpi4py.MPI.Status) – An MPI status object that has been populated with
information about the message to be received via a probe. If None, a new status object will
be created and an empty message will be expected from any source with any tag. (default:
None)

Returns status – If the original status argument was not None, it will be returned after being updated
by the receive. Otherwise, the status object that was created will be returned.

Return type mpi4py.MPI.Status

pybnb.mpi_utils.send_nothing(comm, dest, tag=0)
A helper function for sending an empty message with a given tag. This function is not thread safe.

Parameters

• comm (mpi4py.MPI.Comm) – An MPI communicator.

• dest (int) – The process rank to send the message to.

• tag (int, optional) – A valid MPI tag to use for the message. (default: 0)

pybnb.mpi_utils.recv_data(comm, status, datatype, out=None)
A helper function for receiving numeric or string data sent using the lower-level buffer-based mpi4py routines.

Parameters

• comm (mpi4py.MPI.Comm) – An MPI communicator.

• status (mpi4py.MPI.Status) – An MPI status object that has been populated with
information about the message to be received via a probe.

• datatype (mpi4py.MPI.Datatype) – An MPI datatype used to interpret the received
data. If the datatype is mpi4py.MPI.CHAR, the received data will be converted to a string.

• out (buffer-like object, optional) – A buffer-like object that is compatible
with the datatype argument and can be passed to comm.Recv. Can only be left as None
when the datatype is mpi4py.MPI.CHAR.

Returns

Return type string or user-provided data buffer

4.2.12 pybnb.misc

Miscellaneous utilities used for development.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

class pybnb.misc.MPI_InterruptHandler(handler, disable=False)
A context manager for temporarily assigning a handler to SIGINT and SIGUSR1, depending on the availability
of these signals in the current OS.

pybnb.misc.metric_format(num, unit=’s’, digits=1, align_unit=False)
Format and scale output with metric prefixes.

42 Chapter 4. Reference

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

Example

>>> metric_format(0)
'0.0 s'
>>> metric_format(0, align_unit=True)
'0.0 s '
>>> metric_format(0.002, unit='B')
'2.0 mB'
>>> metric_format(2001, unit='B')
'2.0 KB'
>>> metric_format(2001, unit='B', digits=3)
'2.001 KB'

pybnb.misc.time_format(num, digits=1, align_unit=False)
Format and scale output according to standard time units.

Example

>>> time_format(0)
'0.0 s'
>>> time_format(0, align_unit=True)
'0.0 s '
>>> time_format(0.002)
'2.0 ms'
>>> time_format(2001)
'33.4 m'
>>> time_format(2001, digits=3)
'33.350 m'

pybnb.misc.get_gap_labels(gap, key=’gap’, format=’f’)
Get format strings with enough size and precision to print a given gap tolerance.

pybnb.misc.as_stream(stream, mode=’w’, **kwds)
A utility for handling function arguments that can be a filename or a file object. This function is meant to be
used in the context of a with statement.

Parameters

• stream (file-like object or string) – An existing file-like object or the name
of a file to open.

• mode (string) – Assigned to the mode keyword of the built-in function open when the
stream argument is a filename. (default: “w”)

• **kwds – Additional keywords passed to the built-in function open when the stream ar-
gument is a filename.

Returns A file-like object that can be written to. If the input argument was originally an open file, a
dummy context will wrap the file object so that it will not be closed upon exit of the with block.

Return type file-like object

Example

>>> import tempfile
>>> with tempfile.NamedTemporaryFile() as f:

(continues on next page)

4.2. Modules 43

pybnb, Release 0.6.2

(continued from previous page)

... # pass a file

... with as_stream(f) as g:

... assert g is f

... assert not f.closed

... f.close()

... # pass a filename

... with as_stream(f.name) as g:

... assert not g.closed

... assert g.closed

pybnb.misc.get_default_args(func)
Get the default arguments for a function as a dictionary mapping argument name to default value.

Example

>>> def f(a, b=None):
... pass
>>> get_default_args(f)
{'b': None}

pybnb.misc.get_keyword_docs(doc)
Parses a numpy-style docstring to summarize information in the ‘Parameters’ section into a dictionary.

pybnb.misc.get_simple_logger(filename=None, stream=None, console=True, level=20, format-
ter=None)

Creates a logging object configured to write to any combination of a file, a stream, and the console, or hide all
output.

Parameters

• filename (string, optional) – The name of a file to write to. (default: None)

• stream (file-like object, optional) – A file-like object to write to. (default:
None)

• console (bool, optional) – If True, the logger will be configured to print output to
the console through stdout and stderr. (default: True)

• level (int, optional) – The logging level to use. (default: logging.INFO)

• formatter (logging.Formatter, optional) – The logging formatter to use. (default:
None)

Returns A logging object

Return type logging.Logger

pybnb.misc.create_command_line_solver(problem, parser=None)
Convert a given problem implementation to a command-line example by exposing the pybnb.solver.
solve() function arguments using argparse.

4.2.13 pybnb.pyomo

pybnb.pyomo.misc

Miscellaneous utilities used for development.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

44 Chapter 4. Reference

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

pybnb.pyomo.misc.hash_joblist(jobs)
Create a hash of a Python list by casting each entry to a string.

pybnb.pyomo.misc.add_tmp_component(model, name, obj)
Add a temporary component to a model, adjusting the name as needed to make sure it is unique.

for ... in pybnb.pyomo.misc.mpi_partition(comm, items, root=0)
A generator that partitions the list of items across processes in the communicator. If the communicator size is
greater than 1, the root process iterates over no items, but rather serves them dynamically after receiving requests
from workers. This function assumes each process has an identical copy of the items list. Therefore, items in
the list are not transferred (only indices).

pybnb.pyomo.misc.correct_integer_lb(lb, integer_tolerance)
Converts a lower bound for an integer optimization variable to an integer equal to ceil(ub), taking care not to
move a non-integer bound away from an integer point already within a given tolerance.

pybnb.pyomo.misc.correct_integer_ub(ub, integer_tolerance)
Converts an upper bound for an integer optimization variable to an integer equal to floor(ub), taking care not to
move a non-integer bound away from an integer point already within a given tolerance.

pybnb.pyomo.misc.create_optimality_bound(problem, pyomo_objective,
best_objective_value)

Returns a constraint that bounds an objective function with a known best value. That is, the constraint will
require the objective function to be better than the given value.

pybnb.pyomo.misc.generate_cids(model, prefix=(), **kwds)
Generate forward and reverse mappings between model components and deterministic, unique identifiers that
are safe to serialize or use as dictionary keys.

pybnb.pyomo.problem

A Base class for defining a branch-and-bound problem based on a pyomo.kernel model.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

class pybnb.pyomo.problem.PyomoProblem(*args, **kwds)
An extension of the pybnb.Problem base class for defining problems with a core Pyomo model.

pyomo_object_to_cid
The map from pyomo model object to component id.

cid_to_pyomo_object
The map from component id to pyomo model object.

pyomo_model
Returns the pyomo model for this problem.

Note: This method is abstract and must be defined by the user.

pyomo_model_objective
Returns the pyomo model objective for this problem.

Note: This method is abstract and must be defined by the user.

sense()
Returns the objective sense for this problem.

4.2. Modules 45

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

Note: This method is abstract and must be defined by the user.

pybnb.pyomo.range_reduction

A Problem interface for implementing parallel range reduction on a PyomoProblem during a branch-and-bound solve.

Copyright by Gabriel A. Hackebeil (gabe.hackebeil@gmail.com).

class pybnb.pyomo.range_reduction.RangeReductionProblem(problem,
best_objective=None,
comm=None)

A specialized implementation of the pybnb.Problem interface that can be used to perform optimality-based
range reduction on a fully implemented PyomoProblem by defining additional abstract methods.

listen(root=0)
Listen for requests to run range reduction. All processes within the communicator, except for the root
process, should call this method.

Parameters root (int) – The rank of the process acting as the root. The root process should
not call this function.

sense()
Returns the objective sense for this problem.

Note: This method is abstract and must be defined by the user.

objective()
Returns a feasible value for the objective of the current problem state or self.
infeasible_objective() if the current state is not feasible.

Note: This method is abstract and must be defined by the user.

bound()
Returns a value that is a bound on the objective of the current problem state or self.
unbounded_objective() if no non-trivial bound is available.

Note: This method is abstract and must be defined by the user.

save_state(node)
Saves the current problem state into the given pybnb.node.Node object.

This method is guaranteed to be called once at the start of the solve by all processes involved to collect
the root node problem state, but it may be called additional times. When it is called for the root node, the
node.tree_depth will be zero.

Note: This method is abstract and must be defined by the user.

load_state(node)
Loads the problem state that is stored on the given pybnb.node.Node object.

46 Chapter 4. Reference

mailto:gabe.hackebeil@gmail.com

pybnb, Release 0.6.2

Note: This method is abstract and must be defined by the user.

branch()
Returns a list of Node objects that partition the node state into zero or more children. This method can
also be defined as a generator.

Note: This method is abstract and must be defined by the user.

notify_new_best_node(node, current)
Called when a branch-and-bound solver receives a new best node from the dispatcher. The Problem base
class provides a default implementation for this method that does nothing.

Parameters

• node (Node) – The new best node.

• current (bool) – Indicates whether or not the node argument is the currently loaded
node (from the most recent load_state call).

notify_solve_finished(comm, worker_comm, results)
Called when a branch-and-bound solver finishes. The Problem base class provides a default implemen-
tation for this method that does nothing.

Parameters

• comm (mpi4py.MPI.Comm or None) – The full MPI communicator that includes all
processes. Will be None if MPI has been disabled.

• worker_comm (mpi4py.MPI.Comm or None) – The MPI communicator that includes
only worker processes. Will be None if MPI has been disabled.

• results (SolverResults) – The fully populated results container that will be re-
turned from the solver.

range_reduction_model_setup()
Called prior to starting range reduction solves to set up the Pyomo model

range_reduction_objective_changed(objective)
Called to notify that the range reduction routine has changed the objective

range_reduction_constraint_added(constraint)
Called to notify that the range reduction routine has added a constraint

range_reduction_constraint_removed(constraint)
Called to notify that the range reduction routine has removed a constraint

range_reduction_get_objects()
Called to collect the set of objects over which to perform range reduction solves

range_reduction_solve_for_object_bound(x)
Called to perform a range reduction solve for a Pyomo model object

range_reduction_model_cleanup()
Called after range reduction has finished to allow the user to execute any cleanup to the Pyomo model.

range_reduction_process_bounds(objects, lower_bounds, upper_bounds)
Called to process the bounds obtained by the range reduction solves

4.2. Modules 47

pybnb, Release 0.6.2

4.2.14 pybnb.futures

class pybnb.futures.NestedSolver(problem, node_limit=None, time_limit=5,
queue_limit=None, track_bound=True,
queue_strategy=’depth’)

A class for creating a nested branch-and-bound solve strategy. An instance of this class (wrapped around a
standard problem) can be passed to the solver as the problem argument.

Parameters

• problem (pybnb.Problem) – An object defining a branch-and-bound problem.

• node_limit (int, optional) – The same as the standard solver option, but applied
to the nested solver to limit the number of nodes to explore when processing a work item.
(default: None)

• time_limit (float, optional) – The same as the standard solver option, but ap-
plied to the nested solver to limit the amount of time spent processing a work item. (default:
5)

• queue_limit (int, optional) – The same as the standard solver option, but applied
to the nested solver to limit the size of the queue. (default: None)

• track_bound (bool, optional) – The same as the standard solver option, but ap-
plied to the nested solver control bound tracking. (default: True)

• queue_strategy (QueueStrategy or tuple) – The same as the standard solver op-
tion, but applied to the nested solver to control the queue strategy used when processing a
work item. (default: ‘depth’)

objective()
The solver does not call this method when it sees the problem implements a nested solve.

bound()
The solver does not call this method when it sees the problem implements a nested solve.

branch()
The solver does not call this method when it sees the problem implements a nested solve.

sense()
Calls the sense() method on the user-provided problem.

save_state(node)
Calls the save_state() method on the user-provided problem.

load_state(node)
Calls the load_state() method on the user-provided problem and prepares for a nested solve.

notify_solve_begins(comm, worker_comm, convergence_checker)
Calls the notify_solve_begins() method on the user-provided problem and prepares for a solve.

notify_new_best_node(node, current)
Calls the notify_new_best_node() method on the user-provided problem and stores the best node for use
in the next nested solve.

notify_solve_finished(comm, worker_comm, results)
Calls the notify_solve_finished() method on the user-provided problem and does some final cleanup.

48 Chapter 4. Reference

Python Module Index

p
pybnb.common, 20
pybnb.configuration, 19
pybnb.convergence_checker, 30
pybnb.dispatcher, 37
pybnb.dispatcher_proxy, 41
pybnb.futures, 48
pybnb.misc, 42
pybnb.mpi_utils, 41
pybnb.node, 23
pybnb.priority_queue, 32
pybnb.problem, 21
pybnb.pyomo.misc, 44
pybnb.pyomo.problem, 45
pybnb.pyomo.range_reduction, 46
pybnb.solver, 25
pybnb.solver_results, 24

49

pybnb, Release 0.6.2

50 Python Module Index

Index

A
absolute_gap (pybnb.solver_results.SolverResults at-

tribute), 24
add_tmp_component() (in module

pybnb.pyomo.misc), 45
as_stream() (in module pybnb.misc), 43

B
best_bound() (pybnb.convergence_checker.ConvergenceChecker

method), 32
best_node (pybnb.solver_results.SolverResults at-

tribute), 25
best_objective() (pybnb.convergence_checker.ConvergenceChecker

method), 32
BestObjectiveFirstPriorityQueue (class in

pybnb.priority_queue), 33
bound (pybnb.common.QueueStrategy attribute), 20
bound (pybnb.node.Node attribute), 23
bound (pybnb.solver_results.SolverResults attribute), 24
bound() (pybnb.dispatcher.DispatcherQueueData

method), 37
bound() (pybnb.futures.NestedSolver method), 48
bound() (pybnb.priority_queue.BestObjectiveFirstPriorityQueue

method), 33
bound() (pybnb.priority_queue.BreadthFirstPriorityQueue

method), 34
bound() (pybnb.priority_queue.CustomPriorityQueue

method), 33
bound() (pybnb.priority_queue.DepthFirstPriorityQueue

method), 34
bound() (pybnb.priority_queue.FIFOQueue method),

35
bound() (pybnb.priority_queue.IPriorityQueue

method), 32
bound() (pybnb.priority_queue.LexicographicPriorityQueue

method), 37
bound() (pybnb.priority_queue.LIFOQueue method),

35
bound() (pybnb.priority_queue.LocalGapPriorityQueue

method), 36
bound() (pybnb.priority_queue.RandomPriorityQueue

method), 36
bound() (pybnb.priority_queue.WorstBoundFirstPriorityQueue

method), 33
bound() (pybnb.problem.Problem method), 22
bound() (pybnb.pyomo.range_reduction.RangeReductionProblem

method), 46
bound_worsened() (pybnb.convergence_checker.ConvergenceChecker

method), 31
branch() (pybnb.futures.NestedSolver method), 48
branch() (pybnb.problem.Problem method), 22
branch() (pybnb.pyomo.range_reduction.RangeReductionProblem

method), 47
breadth (pybnb.common.QueueStrategy attribute), 20
BreadthFirstPriorityQueue (class in

pybnb.priority_queue), 34

C
check_termination_criteria()

(pybnb.convergence_checker.ConvergenceChecker
method), 31

cid_to_pyomo_object
(pybnb.pyomo.problem.PyomoProblem at-
tribute), 45

collect_worker_statistics()
(pybnb.solver.Solver method), 26

comm (pybnb.solver.Solver attribute), 26
COMPRESSION (pybnb.configuration.Configuration at-

tribute), 20
compute_absolute_gap() (in module

pybnb.convergence_checker), 30
compute_absolute_gap()

(pybnb.convergence_checker.ConvergenceChecker
method), 31

compute_relative_gap() (in module
pybnb.convergence_checker), 30

compute_relative_gap()
(pybnb.convergence_checker.ConvergenceChecker
method), 31

51

pybnb, Release 0.6.2

Configuration (class in pybnb.configuration), 19
ConvergenceChecker (class in

pybnb.convergence_checker), 30
correct_integer_lb() (in module

pybnb.pyomo.misc), 45
correct_integer_ub() (in module

pybnb.pyomo.misc), 45
create_command_line_solver() (in module

pybnb.misc), 44
create_optimality_bound() (in module

pybnb.pyomo.misc), 45
custom (pybnb.common.QueueStrategy attribute), 20
CustomPriorityQueue (class in

pybnb.priority_queue), 33

D
depth (pybnb.common.QueueStrategy attribute), 20
DepthFirstPriorityQueue (class in

pybnb.priority_queue), 34
DispatcherAction (in module

pybnb.dispatcher_proxy), 41
DispatcherBase (class in pybnb.dispatcher), 38
DispatcherDistributed (class in

pybnb.dispatcher), 40
DispatcherLocal (class in pybnb.dispatcher), 39
DispatcherProxy (class in pybnb.dispatcher_proxy),

41
DispatcherQueueData (class in pybnb.dispatcher),

37
DispatcherResponse (in module

pybnb.dispatcher_proxy), 41
dumps() (in module pybnb.node), 23

E
eligible_for_queue()

(pybnb.convergence_checker.ConvergenceChecker
method), 31

eligible_to_branch()
(pybnb.convergence_checker.ConvergenceChecker
method), 31

F
feasible (pybnb.common.SolutionStatus attribute), 21
fifo (pybnb.common.QueueStrategy attribute), 20
FIFOQueue (class in pybnb.priority_queue), 35
filter() (pybnb.priority_queue.BestObjectiveFirstPriorityQueue

method), 34
filter() (pybnb.priority_queue.BreadthFirstPriorityQueue

method), 34
filter() (pybnb.priority_queue.CustomPriorityQueue

method), 33
filter() (pybnb.priority_queue.DepthFirstPriorityQueue

method), 34

filter() (pybnb.priority_queue.FIFOQueue method),
35

filter() (pybnb.priority_queue.IPriorityQueue
method), 32

filter() (pybnb.priority_queue.LexicographicPriorityQueue
method), 37

filter() (pybnb.priority_queue.LIFOQueue method),
35

filter() (pybnb.priority_queue.LocalGapPriorityQueue
method), 36

filter() (pybnb.priority_queue.RandomPriorityQueue
method), 36

filter() (pybnb.priority_queue.WorstBoundFirstPriorityQueue
method), 33

G
generate_cids() (in module pybnb.pyomo.misc), 45
get() (pybnb.priority_queue.BestObjectiveFirstPriorityQueue

method), 34
get() (pybnb.priority_queue.BreadthFirstPriorityQueue

method), 34
get() (pybnb.priority_queue.CustomPriorityQueue

method), 33
get() (pybnb.priority_queue.DepthFirstPriorityQueue

method), 34
get() (pybnb.priority_queue.FIFOQueue method), 35
get() (pybnb.priority_queue.IPriorityQueue method),

32
get() (pybnb.priority_queue.LexicographicPriorityQueue

method), 37
get() (pybnb.priority_queue.LIFOQueue method), 35
get() (pybnb.priority_queue.LocalGapPriorityQueue

method), 36
get() (pybnb.priority_queue.RandomPriorityQueue

method), 36
get() (pybnb.priority_queue.WorstBoundFirstPriorityQueue

method), 33
get_default_args() (in module pybnb.misc), 44
get_gap_labels() (in module pybnb.misc), 43
get_keyword_docs() (in module pybnb.misc), 44
get_simple_logger() (in module pybnb.misc), 44

H
hash_joblist() (in module pybnb.pyomo.misc), 44

I
inf (in module pybnb.common), 20
infeasible (pybnb.common.SolutionStatus attribute),

21
infeasible_objective()

(pybnb.problem.Problem method), 22
initialize() (pybnb.dispatcher.DispatcherBase

method), 38

52 Index

pybnb, Release 0.6.2

initialize() (pybnb.dispatcher.DispatcherDistributed
method), 40

initialize() (pybnb.dispatcher.DispatcherLocal
method), 39

interrupted (pybnb.common.TerminationCondition
attribute), 21

invalid (pybnb.common.SolutionStatus attribute), 21
IPriorityQueue (class in pybnb.priority_queue), 32
is_dispatcher (pybnb.solver.Solver attribute), 26
is_worker (pybnb.solver.Solver attribute), 26
items() (pybnb.priority_queue.BestObjectiveFirstPriorityQueue

method), 34
items() (pybnb.priority_queue.BreadthFirstPriorityQueue

method), 34
items() (pybnb.priority_queue.CustomPriorityQueue

method), 33
items() (pybnb.priority_queue.DepthFirstPriorityQueue

method), 35
items() (pybnb.priority_queue.FIFOQueue method),

35
items() (pybnb.priority_queue.IPriorityQueue

method), 32
items() (pybnb.priority_queue.LexicographicPriorityQueue

method), 37
items() (pybnb.priority_queue.LIFOQueue method),

35
items() (pybnb.priority_queue.LocalGapPriorityQueue

method), 36
items() (pybnb.priority_queue.RandomPriorityQueue

method), 36
items() (pybnb.priority_queue.WorstBoundFirstPriorityQueue

method), 33

L
LexicographicPriorityQueue (class in

pybnb.priority_queue), 36
lifo (pybnb.common.QueueStrategy attribute), 20
LIFOQueue (class in pybnb.priority_queue), 35
listen() (pybnb.pyomo.range_reduction.RangeReductionProblem

method), 46
load_state() (pybnb.futures.NestedSolver method),

48
load_state() (pybnb.problem.Problem method), 22
load_state() (pybnb.pyomo.range_reduction.RangeReductionProblem

method), 46
loads() (in module pybnb.node), 23
local_gap (pybnb.common.QueueStrategy attribute),

20
LocalGapPriorityQueue (class in

pybnb.priority_queue), 36
log_critical() (pybnb.dispatcher.DispatcherBase

method), 39
log_critical() (pybnb.dispatcher.StatusPrinter

method), 38

log_critical() (pybnb.dispatcher_proxy.DispatcherProxy
method), 41

log_debug() (pybnb.dispatcher.DispatcherBase
method), 39

log_debug() (pybnb.dispatcher.StatusPrinter
method), 38

log_debug() (pybnb.dispatcher_proxy.DispatcherProxy
method), 41

log_error() (pybnb.dispatcher.DispatcherBase
method), 39

log_error() (pybnb.dispatcher.StatusPrinter
method), 38

log_error() (pybnb.dispatcher_proxy.DispatcherProxy
method), 41

log_info() (pybnb.dispatcher.DispatcherBase
method), 39

log_info() (pybnb.dispatcher.StatusPrinter method),
38

log_info() (pybnb.dispatcher_proxy.DispatcherProxy
method), 41

log_warning() (pybnb.dispatcher.DispatcherBase
method), 39

log_warning() (pybnb.dispatcher.StatusPrinter
method), 38

log_warning() (pybnb.dispatcher_proxy.DispatcherProxy
method), 41

M
MARSHAL_PROTOCOL_VERSION

(pybnb.configuration.Configuration attribute),
20

maximize (in module pybnb.common), 20
Message (class in pybnb.mpi_utils), 41
metric_format() (in module pybnb.misc), 42
minimize (in module pybnb.common), 20
MPI_InterruptHandler (class in pybnb.misc), 42
mpi_partition() (in module pybnb.pyomo.misc), 45

N
nan (in module pybnb.common), 20
NestedSolver (class in pybnb.futures), 48
new_objective() (pybnb.dispatcher.StatusPrinter

method), 38
Node (class in pybnb.node), 23
node_limit (pybnb.common.TerminationCondition at-

tribute), 21
nodes (pybnb.dispatcher.DispatcherQueueData at-

tribute), 37
nodes (pybnb.solver_results.SolverResults attribute), 24
notify_new_best_node()

(pybnb.futures.NestedSolver method), 48
notify_new_best_node()

(pybnb.problem.Problem method), 23

Index 53

pybnb, Release 0.6.2

notify_new_best_node()
(pybnb.pyomo.range_reduction.RangeReductionProblem
method), 47

notify_solve_begins()
(pybnb.futures.NestedSolver method), 48

notify_solve_begins() (pybnb.problem.Problem
method), 22

notify_solve_finished()
(pybnb.futures.NestedSolver method), 48

notify_solve_finished()
(pybnb.problem.Problem method), 23

notify_solve_finished()
(pybnb.pyomo.range_reduction.RangeReductionProblem
method), 47

O
objective (pybnb.common.QueueStrategy attribute),

20
objective (pybnb.node.Node attribute), 23
objective (pybnb.solver_results.SolverResults at-

tribute), 24
objective() (pybnb.futures.NestedSolver method),

48
objective() (pybnb.problem.Problem method), 22
objective() (pybnb.pyomo.range_reduction.RangeReductionProblem

method), 46
objective_improved()

(pybnb.convergence_checker.ConvergenceChecker
method), 31

objective_is_optimal()
(pybnb.convergence_checker.ConvergenceChecker
method), 31

objective_limit (pybnb.common.TerminationCondition
attribute), 21

optimal (pybnb.common.SolutionStatus attribute), 21
optimality (pybnb.common.TerminationCondition at-

tribute), 21

P
pprint() (pybnb.solver_results.SolverResults

method), 25
PriorityQueueFactory() (in module

pybnb.priority_queue), 37
probe() (pybnb.mpi_utils.Message method), 41
Problem (class in pybnb.problem), 22
ProcessType (in module pybnb.dispatcher_proxy), 41
put() (pybnb.priority_queue.BestObjectiveFirstPriorityQueue

method), 33
put() (pybnb.priority_queue.BreadthFirstPriorityQueue

method), 34
put() (pybnb.priority_queue.CustomPriorityQueue

method), 33
put() (pybnb.priority_queue.DepthFirstPriorityQueue

method), 34

put() (pybnb.priority_queue.FIFOQueue method), 35
put() (pybnb.priority_queue.IPriorityQueue method),

32
put() (pybnb.priority_queue.LexicographicPriorityQueue

method), 37
put() (pybnb.priority_queue.LIFOQueue method), 35
put() (pybnb.priority_queue.LocalGapPriorityQueue

method), 36
put() (pybnb.priority_queue.RandomPriorityQueue

method), 36
put() (pybnb.priority_queue.WorstBoundFirstPriorityQueue

method), 32
pybnb.common (module), 20
pybnb.configuration (module), 19
pybnb.convergence_checker (module), 30
pybnb.dispatcher (module), 37
pybnb.dispatcher_proxy (module), 41
pybnb.futures (module), 48
pybnb.misc (module), 42
pybnb.mpi_utils (module), 41
pybnb.node (module), 23
pybnb.priority_queue (module), 32
pybnb.problem (module), 21
pybnb.pyomo.misc (module), 44
pybnb.pyomo.problem (module), 45
pybnb.pyomo.range_reduction (module), 46
pybnb.solver (module), 25
pybnb.solver_results (module), 24
pyomo_model (pybnb.pyomo.problem.PyomoProblem

attribute), 45
pyomo_model_objective

(pybnb.pyomo.problem.PyomoProblem at-
tribute), 45

pyomo_object_to_cid
(pybnb.pyomo.problem.PyomoProblem at-
tribute), 45

PyomoProblem (class in pybnb.pyomo.problem), 45

Q
queue_empty (pybnb.common.TerminationCondition

attribute), 21
queue_limit (pybnb.common.TerminationCondition

attribute), 21
queue_priority (pybnb.node.Node attribute), 24
QueueStrategy (class in pybnb.common), 20

R
random (pybnb.common.QueueStrategy attribute), 20
RandomPriorityQueue (class in

pybnb.priority_queue), 35
range_reduction_constraint_added()

(pybnb.pyomo.range_reduction.RangeReductionProblem
method), 47

54 Index

pybnb, Release 0.6.2

range_reduction_constraint_removed()
(pybnb.pyomo.range_reduction.RangeReductionProblem
method), 47

range_reduction_get_objects()
(pybnb.pyomo.range_reduction.RangeReductionProblem
method), 47

range_reduction_model_cleanup()
(pybnb.pyomo.range_reduction.RangeReductionProblem
method), 47

range_reduction_model_setup()
(pybnb.pyomo.range_reduction.RangeReductionProblem
method), 47

range_reduction_objective_changed()
(pybnb.pyomo.range_reduction.RangeReductionProblem
method), 47

range_reduction_process_bounds()
(pybnb.pyomo.range_reduction.RangeReductionProblem
method), 47

range_reduction_solve_for_object_bound()
(pybnb.pyomo.range_reduction.RangeReductionProblem
method), 47

RangeReductionProblem (class in
pybnb.pyomo.range_reduction), 46

recv() (pybnb.mpi_utils.Message method), 41
recv_data() (in module pybnb.mpi_utils), 42
recv_nothing() (in module pybnb.mpi_utils), 42
register_queue_type() (in module

pybnb.priority_queue), 37
relative_gap (pybnb.solver_results.SolverResults at-

tribute), 24
reset() (pybnb.configuration.Configuration method),

20

S
save_dispatcher_queue()

(pybnb.dispatcher.DispatcherBase method), 39
save_dispatcher_queue()

(pybnb.dispatcher.DispatcherDistributed
method), 40

save_dispatcher_queue() (pybnb.solver.Solver
method), 26

save_state() (pybnb.futures.NestedSolver method),
48

save_state() (pybnb.problem.Problem method), 22
save_state() (pybnb.pyomo.range_reduction.RangeReductionProblem

method), 46
send_nothing() (in module pybnb.mpi_utils), 42
sense (pybnb.dispatcher.DispatcherQueueData at-

tribute), 37
sense() (pybnb.futures.NestedSolver method), 48
sense() (pybnb.problem.Problem method), 22
sense() (pybnb.pyomo.problem.PyomoProblem

method), 45

sense() (pybnb.pyomo.range_reduction.RangeReductionProblem
method), 46

SERIALIZER (pybnb.configuration.Configuration at-
tribute), 19

SERIALIZER_PROTOCOL_VERSION
(pybnb.configuration.Configuration attribute),
19

serve() (pybnb.dispatcher.DispatcherDistributed
method), 40

size() (pybnb.priority_queue.BestObjectiveFirstPriorityQueue
method), 34

size() (pybnb.priority_queue.BreadthFirstPriorityQueue
method), 34

size() (pybnb.priority_queue.CustomPriorityQueue
method), 33

size() (pybnb.priority_queue.DepthFirstPriorityQueue
method), 35

size() (pybnb.priority_queue.FIFOQueue method), 35
size() (pybnb.priority_queue.IPriorityQueue method),

32
size() (pybnb.priority_queue.LexicographicPriorityQueue

method), 37
size() (pybnb.priority_queue.LIFOQueue method), 35
size() (pybnb.priority_queue.LocalGapPriorityQueue

method), 36
size() (pybnb.priority_queue.RandomPriorityQueue

method), 36
size() (pybnb.priority_queue.WorstBoundFirstPriorityQueue

method), 32
solution_status (pybnb.solver_results.SolverResults

attribute), 24
SolutionStatus (class in pybnb.common), 21
solve() (in module pybnb.solver), 29
solve() (pybnb.solver.Solver method), 26
Solver (class in pybnb.solver), 25
SolverResults (class in pybnb.solver_results), 24
state (pybnb.node.Node attribute), 24
StatusPrinter (class in pybnb.dispatcher), 37
stop_listen() (pybnb.dispatcher_proxy.DispatcherProxy

method), 41
summarize_worker_statistics() (in module

pybnb.solver), 29

T
termination_condition

(pybnb.solver_results.SolverResults attribute),
24

TerminationCondition (class in pybnb.common),
21

tic() (pybnb.dispatcher.StatusPrinter method), 38
time_format() (in module pybnb.misc), 43
time_limit (pybnb.common.TerminationCondition at-

tribute), 21
tree_depth (pybnb.node.Node attribute), 24

Index 55

pybnb, Release 0.6.2

U
unbounded (pybnb.common.SolutionStatus attribute),

21
unbounded_objective() (pybnb.problem.Problem

method), 22
unknown (pybnb.common.SolutionStatus attribute), 21
update() (pybnb.dispatcher.DispatcherDistributed

method), 40
update() (pybnb.dispatcher.DispatcherLocal method),

39
update() (pybnb.dispatcher_proxy.DispatcherProxy

method), 41

W
wall_time (pybnb.solver_results.SolverResults at-

tribute), 24
worker_comm (pybnb.solver.Solver attribute), 26
worker_count (pybnb.solver.Solver attribute), 26
worst_bound() (pybnb.convergence_checker.ConvergenceChecker

method), 31
worst_objective()

(pybnb.convergence_checker.ConvergenceChecker
method), 32

worst_terminal_bound
(pybnb.dispatcher.DispatcherQueueData
attribute), 37

WorstBoundFirstPriorityQueue (class in
pybnb.priority_queue), 32

write() (pybnb.solver_results.SolverResults method),
25

56 Index

	Getting Started
	Installation
	Complete Example
	More Examples
	Defining a Problem
	Solving a Problem
	Creating a Solver

	How the Solver Calls the Problem Methods

	Advanced Usage
	Setting the Queue Strategy and Solver Tolerances
	Terminating a Solve Early
	Continuing a Solve After Stopping
	Serialization Configuration

	pybnb.futures
	Using a Nested Solve to Improve Parallel Performance

	Reference
	Quick Links
	Modules
	pybnb.configuration
	pybnb.common
	pybnb.problem
	pybnb.node
	pybnb.solver_results
	pybnb.solver
	pybnb.convergence_checker
	pybnb.priority_queue
	pybnb.dispatcher
	pybnb.dispatcher_proxy
	pybnb.mpi_utils
	pybnb.misc
	pybnb.pyomo
	pybnb.futures

	Python Module Index
	Index

